MCRG Flow for the Nonlinear Sigma Model

Raphael Flore, Daniel Körner, Björn Wellegehausen, Andreas Wipf

Friedrich-Schiller-Universität Jena

31st International Symposium on Lattice Field Theory 2013

RESEARCH TRAINING GROUP QUANTUM AND GRAVITATIONAL FIELDS

seit 1558

Asymptotic Safety

RG approach to QFT

- theory at scale k described by effective average action Γ_k
- upper (ultraviolet) cutoff Λ : $\Gamma_k = S_{mic}$
- use RG flow to integrate out fluctuations until lower cutoff $k = \lambda$
- fundamental theory valid on all scales, limit $\Lambda \to \infty$ and $\lambda \to 0$ exists

Asymptotic Safety

RG approach to QFT

- theory at scale k described by effective average action Γ_k
- upper (ultraviolet) cutoff Λ : $\Gamma_k = S_{mic}$
- use RG flow to integrate out fluctuations until lower cutoff $k = \lambda$
- fundamental theory valid on all scales, limit $\Lambda \to \infty$ and $\lambda \to 0$ exists

The Gravity situation

- unified theory requires quantization of spacetime metric
- at IR cutoff: Einstein-Hilbert action
- perturbative approach leads to severe divergences
- theory not renormalizable in perturbative way

Asymptotic Safety

- Asymptotic Safety Scenario [Weinberg '80] : gravity non-perturbatively renormalizable
- needs nongaussian (ultraviolet) fixed point with finite number of relevant directions to protect UV from unphysical divergences
- asymptotic freedom (QCD): theory approaches gaussian fixed point for $k
 ightarrow \infty$

Setting the stage

 nontrivial UV fixed point suspected in (*D* > 2) nonlinear sigma models by perturbation theory and functional RG calculations [Codello, Percacci '08]

[Flore, Wipf, Zanusso '12]

D = 3 O(N) NLSM

$${\cal S}={1\over 2g^2}\int d^3x\;\partial_\muec\phi\partial^\muec\phi,\;\;$$
 where $ec\phi^2=1$

 Flow diagram determinable from the lattice via Monte Carlo Renormalization Group (MCRG) techniques

Setting the stage

 nontrivial UV fixed point suspected in (*D* > 2) nonlinear sigma models by perturbation theory and functional RG calculations [Codello, Percacci '08]

Flore, Wipf, Zanusso '12

D = 3 O(N) NLSM

$$S=rac{1}{2g^2}\int d^3x\;\partial_\muec{\phi}\partial^\muec{\phi},\;\; ext{where}\;ec{\phi}^2=1$$

 Flow diagram determinable from the lattice via Monte Carlo Renormalization Group (MCRG) techniques

Our Setup

- local HMC with O(N)-valued fields to generate Markov Chain
- blockspin transformation to integrate out fluctuations
- demon method to determine effective couplings

RG picture on the lattice

- (discrete) lattice momenta cut off by inverse lattice spacing a⁻¹ and inverse linear box size (aN)⁻¹
- lattice simulation equivalent to integrating out all fluctuations inbetween
- correlation functions determined by direct measurement

• Blockspin transformation : $a \rightarrow 2a, N \rightarrow N/2$

RG picture on the lattice

- (discrete) lattice momenta cut off by inverse lattice spacing a⁻¹ and inverse linear box size (aN)⁻¹
- lattice simulation equivalent to integrating out all fluctuations inbetween
- correlation functions determined by direct measurement

• Blockspin transformation : $a \rightarrow 2a, N \rightarrow N/2$

Observables

• (discrete) beta function $ilde{eta}_i = ilde{eta}(g_i) = g_i^{blocked} - g_i$

• (discrete) stability matrix
$$S_{ij} = rac{\partial ilde{eta}}{\partial g}$$

[Creutz, Gocksch, Ogilvie, Okawa '84] Demon Method

- best match of demon Hamiltonian $H_D = \sum_i g_i O_i(\phi)$ against configurations from source Hamiltonian H_S
- Canonical Demon [Hasenbusch, Pinn, Wieczerkowski '95] avoids systematical small volume errors
- simulate joint partition function including the "Demons" Eⁱ_D

$$Z_{C} = \sum_{E_{D}^{0} = -E_{m}}^{E_{m}} \dots \sum_{E_{D}^{n} = -E_{m}}^{E_{m}} \int \mathcal{D}\phi \ e^{-H_{S} - g_{i}E_{D}^{i}}$$

using microcanonical updates on statistically independent configurations and determine demon couplings

$$\left\langle E_{D}^{i} \right\rangle = rac{1}{g_{i}} - rac{E_{m}}{ anh(g_{i}E_{m})}$$

Systematic Errors

- finite volume effects not visible in $32^3 \rightarrow 16^3$ simulations
- discretisation errors small near critical line
- effective action in demon method leads to truncation errors
- half group property of RG transformation R_s (blockspin + demon) violated

 $R_s \circ R_s \neq R_{2s}$

Systematic Errors

- finite volume effects not visible in $32^3 \rightarrow 16^3$ simulations
- discretisation errors small near critical line
- effective action in demon method leads to truncation errors
- half group property of RG transformation R_s (blockspin + demon) violated

 $R_s \circ R_s \neq R_{2s}$

Option 1: Add more operators!

• follow derivative expansion ; up to four operators, i.e. all possible operators up to fourth order in the momenta

Systematic Errors

- finite volume effects not visible in $32^3 \rightarrow 16^3$ simulations
- discretisation errors small near critical line
- effective action in demon method leads to truncation errors
- half group property of RG transformation R_s (blockspin + demon) violated

 $R_s \circ R_s \neq R_{2s}$

Option 1: Add more operators!

• follow derivative expansion ; up to four operators, i.e. all possible operators up to fourth order in the momenta

Option 2: Use improved blockspin transformation!

$$\Phi_{ ilde{x}} \propto e^{C \cdot \Phi_{ ilde{x}} \sum_{x \in \Lambda_{ ilde{x}}} \phi_x}$$

Hasenfratz, Hasenfratz, Heller, Karsch '84]

• parametrize $C = \sum_i c_i g_i$ such that for $g \to \infty$, $C \to \infty$ holds

- Gaussian fixed point at zero coupling
- non-Gaussian fixed point with a UV-attractive direction (beta function w.r.t. the inverse lattice spacing)

- slope of beta function corresponds to inverse of critical exponent ν of the correlation length
- ν deviates from expected behaviour for N > 6

 g_0

high temperature (Gaussian) FP : spins randomly aligned, absolute disorder

high temperature (Gaussian) FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order

high temperature (Gaussian) FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction

high temperature (Gaussian) FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction critical line : separates symmetry broken and unbroken regime

high temperature (Gaussian) FP : spins randomly aligned, absolute disorder low temperature FP : spins uniformly aligned, absolute order non-Gaussian FP : 1 IR-relevant, 1 IR-irrelevant direction critical line : separates symmetry broken and unbroken regime renormalized trajectory : attractor for the RG trajectories

• leading *N*-dependence absorbed into couplings $g_i \equiv \frac{g_i}{N}$

high temperature (Gaussian) FP: $\nu \approx -1$

high temperature (Gaussian) FP: $\nu \approx -1$ low temperature FP: $\nu \approx 1$

high temperature (Gaussian) FP: $\nu \approx -1$ low temperature FP: $\nu \approx 1$

non-Gaussian FP: $\nu = 0.64(3)$ (1P $\nu = 0.50$, FSS $\nu = 0.7112(5)$

[Campostrini, Hasenbusch, Pelissetto, Rossi, Vicari '02]) work in progress!

• only irrelevant coupling is added

• only irrelevant coupling is added

Summary

- MCRG+Demon Method suitable to obtain flow diagram
- trajectories can be computed in *parallel*
- in principle arbitrarily long trajectories without large lattices
- systematic errors of demon method reduced by improved blockspin transformation
- flow diagram reveals two trivial IR fixed points (absolute order and absolute disorder) and one nontrivial UV fixed point
- fixed point structure stable against change of truncation
- only one relevant direction \rightarrow asymptotic safety scenario realized

Outlook

- finish detail simulations for critical exponents
- compare to large *N* and FRG results
- extend to fermionic / CDT models

Optimization of the RG transformation

