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The conventional widsom: Quantize hydrodynamics? Are you mad?
Hydro is an inherently classical effective “mean field” theory, because it
is based on the equation of motion of the average operator T̂µν , whose
parameters (sound speed, viscosity,...) are determined by IR limits...

lim
k→0

1

k

∫

dxdx′eik(x−x′)
〈

T̂µν(x)T̂µν(x′)
〉

While the underlying degrees of freedom are quantum, everything that
appears in hydro are averages. At sizes where quantum uncertainities
become important, hydro stops applying.
Why would you quantize an average of an already quantum operator?
Well, there are several reasons to try: (1) It might be possible!



(2) It might teach us something!
In the limit where viscosity is so low that soundwaves

Of amplitude so that momentum Psound ∼ (area)λ (δρ) cs ≫ T

And wavenumber ksound ∼ Psound

Survive (ie their amplitude does not decay to Esound ∼ T ) τsound ≫ 1/T

Quantum corrections to sound will be non-negligible, And in “conventional
widsom” its not clear how to deal with this!
Is it relevant to physics? good question!



(3) It might teach us about strongly coupled theories in a mysterious limit
Quantum fluctuations ⇔ Thermal fluctuations. What if viscosity is so low
that thermal fluctuations trigger sound waves ?

Landau&Lifshitz (also D.Rishke,B Betz et al): Hydrodynamics has 3 scales

lmicro︸ ︷︷ ︸

∼s−1/3,n−1/3

≪ lmfp
︸︷︷︸

∼η/(sT )

≪ Lmacro︸ ︷︷ ︸
size,gradient

Transport Boltzmann eq. good iff O
(
(1/ρ)1/3∂µf(...)

)
≪ 1

Classical AdS/CFT requires λ ≫ 1 but λN−1
c = gYM ≪ 1 ⇒ 1

TN
2/3
c

≪ η
sT

Away from this limit microscopic fluctuations drive fluid. This limit is
very little known (See also: Kovtun, Moore, Romatschke, 1104.1586) but
it might be very relevant for both QGP and cold atoms



Hydro as fields: for simplicity assume no conserved charges except Tµν

Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates φI(x

µ), I = 1...3 of the position of a fluid cell originally at
φI(t = 0, xi), I = 1...3 . (Lagrangian hydro )!
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The system is a Fluid if it’s Lagrangian obeys some symmetries (Ideal
hydrodynamics ↔ Isotropy in comoving frame) Excitations (Sound waves,
vortices etc) can be thought of as ”Goldstone bosons”, arising when a
theory is expanded around a classical solution.



Translation invariance at Lagrangian level ↔ Lagrangian can only be a
function of BIJ = ∂µφ

I∂µφJ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detBIJ ,diagBIJ

The comoving fluid cell must not see a ”preferred” direction ⇐ SO(3)
invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B
In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)



A few exercises for the bored public Check that L = F(B) leads to

Tµν = (P + ρ)uµuν − Pgµν

provided that

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ǫµαβγǫIJK ∂αφ

I∂βφ
J∂γφ

K

Equation of state chosen by specifying F (B) . “Ideal”: ⇔ F (B) = B4/3
√
B is identified with the entropy and

√
BdF (B)

dB with the microscopic
temperature. You can also show that

∂µ
√
Buµ = 0 , s = −dP

dT
=

p+ ρ

T
Ie,

√
B is the conserved quantity corresponding to our earlier group.



Ideal hydrodynamics and the microscopic scale
The most general Lagrangian is

L = T 4
0F

(
B

T 6
0

)

, B = T 6
0 detBIJ , BIJ =

∣
∣∂µφ

I∂µφJ
∣
∣

Where φI=1,2,3 is the comoving coordinate of a volume element of fluid.

NB: T0 ∼ Λg microscopic scale, includes thermal wavelength and g ∼ N2
c

(or µ/Λ for dense systems ). T0 → ∞ ⇒ classical limit
It is therefore natural to identify T0 with the microscopic scale!
At T0 < ∞ quantum and thermal fluctuations can produce sound waves
and vortices, “weighted” by the usual path integral prescription! We can
now investigate this limit!



Let us linearly expand around the static solution with enthalpy w0 ∼ T 4
0

φ0
I =

~X with perturbations: φ = φ0
I + ~π = φ0

I + ~πL︸︷︷︸
sound

+ ~πT︸︷︷︸
vortex

(∂φ)−1 = 1− ∂π + ∂π2 + ...

det ∂φ = 1 + [∂π] + 1
2

(
[∂π]2 − [∂π2]

)
+ 1

6

(
[∂π]3 − 3[∂π][∂π2] + 2[∂π3]

)

Two polarizations: ~π (sound waves) and πT (vortices)



And we discover a fundamental problem: Vortices carry arbitray small
energies but stay put! No S-matrix in hydrostatic solution!

Llinear = ˙~πL
2 − c2s(∇.~πL)

2

︸ ︷︷ ︸
sound wave

+ π̇T
2

︸︷︷︸
vortex

+Interactions

Unlike sound waves , Vortices can not give you a theory of free particles,
since they do not propagate: They carry energy and momentum but stay in
the same place! Can not expand such a quantum theory in terms of free
particles.

Physically: “quantum vortices” can live for an arbitrary long time, and
dominate any vacuum solution with their interactions.

A perturbative and suspect solution : Give “quantum vortices” a propagation
speed, E = cTp , bring cT → 0 (see 1112.4086). But some of us are lattice
theorists, can do better than that!



∫

DφI exp

(

i

∫

d4xL

)

→︸︷︷︸
lattice+Wick

∫

dφi
I exp

[

−(T0∆x)4
∑

i

F (φi)

]

Continuum limit: δ → ∆xT0 ≪ 1 . Study the behaviour of limδ→0 〈X〉 .
Some specific considerations:

recall that BIJ = ∂µφ
I∂µφJ and uµ = 1

bǫ
µαβγ∂αφ

1∂βφ
2∂γφ

3 and: L =
F (b) ; b =

√
detBIJ to avoid problems with periodic boundaries use

“shifted” fields (“subtract” the hydrostatic background)...

πI = φI − xI → ∂αφ
I = ∂απ

I + 1δIα



since we expect extended structures (e.g., vortices) we use HMC updates:
one therefore needs the variation of the action w.r.t. the local field values...

δS
δφI(x)

= δS
δb

δb
δ(∂αφJ)

δ(∂αφ
J)

δφI(x)
=

∑

y,µ,ν,σ
dF
db δ

IJδ(y − x± µ̂/2± ν̂/2± σ̂/2) b
8B

−1
JK |ǫµνσα| ∂αφK

∣
∣
y−α̂/2

y+α̂/2

fields (φI ) occupy lattice sites; derivatives (and hence BIJ , b, uµ, Tµν ,
etc.) defined at body centers of hypercubes:
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L4 C(= aT0) traj dτMD accept
204 0.8 4000 0.001 / 0.0005 49% / 85%
164 1 10000 0.001 52%
124 1.33333 10000 0.0005 61%
104 1.6 10000 0.0005 41%
84 2 10000 0.00025 72%
64 2.66667 10000 0.00025 56%

HMC algorithm

Runs with constant physical volume

L=(16/C)4 4

C: assumed fundamental
scale  ~aT0

C/Open MP code



Trivial ground state
+Perturbations

Non−trivial ground state

So, what
can we
calculate?

Is there a phase transition at a critical T0 between a “classical”
hydrostatic vacuum and a vacuum dominated by quantum/thermal
turbulence (bound states of quantum vortices and the like)?

Is the theory trivial in the RG group sense?
What F (B) admit to a well-behaved continuum limit?

These questions can be answered by a lattice calculation. No spurious cT
parameter or perturbative expansion needed



Some interesting observables

• ”Scalar perturbation” 〈B(dF/dB)〉

〈Tµ
µ 〉

• ”Vector perturbation” 〈uµuν + gµν〉 =
〈

1
BIJ

∂µφ
I∂νφ

J
〉

• Vorticity CP =
∮

P
(p+ ρ)uµdx

µ

Averages and Fluctuation, correlator,spectral function interesting.
Modifications of either with T0 could indicate transition to “quantum
turbilence”.



Consider a conformal fluid with no degeneracy and one microscopic DoF
In the classical hydrostatic limit (Where B = 1 )

e = T 4
0B

2/3 = gπ2

60 T
4

s = T 3
0

√
B = gπ2

45 T
3

T = e+p
s = 4

3gT0B
1/6







T =
4

3g
T0 =

χ

a
?

where g is the microscopic degeneracy∼ N2
c . And of course

~uµ = (1,~0), 〈uµuν〉 = δ00 , 〈Tµν〉 =
δ lnZ

δgµν







e 0 0 0
0 e/3 0 0
0 0 e/3 0
0 0 0 e/3







with higher order correlations vanishing. If quantum vacuum non-trivial
Tµν = (p+ ρ)uµuν + pgµν so e = F (B) 6= T00, p = BdF (b)

dB 6= Tii etc.



Quantum mechanics means scale a potentially physical “cutoff”, dominating
dynamics aT0 ∼ C . interesting structure at high C... Crossover to
collective-dominated regime or lattice artifact?



Normalized fluctuations independent of C, but the constants of
proportionality non-trivial
Fluctuations high Are we ”missing” phase transition by measuring average
observables? Are fluctuations part of ”new phase” ?



Entropy and energy density correlators, “quantum corrections” to equations
of state?



?

Sound mode?

Off diagonal and diagonal elements have long-time correlation. To what
extent is this “similar to a quantum viscosity” ?



Instead of a conclusion: further steps

Understand the continuum limit How do observables diverge when it is
approached? Langevan semi-classical limit? (Relativistic generalization
of T.Koide, T.Kodama, 1105.6256)

Understanding the vacuum Under what circumstances is the hydrostatic
limit stable? If its not, what are the effective degrees of freedom?
What happens at finite temperature? Are there phase transitions In
temperature or T0 ?

Connecting to the ”usual” transport theory BBGKY hyerarchy, gradient
expansion



Spare slides
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Rescaling C by appropriate factor gives us “right” thermodynamics



If limδ→0 〈X〉 ∼ 〈X0〉 , the thermostatic expectation value, (〈X〉 is
stable).

If limδ→0 〈X〉 / 〈X0〉 ∼ f(B) , vacuum non-trivial but “well-behaved”.

If limδ→0 〈X〉 / 〈X0〉 ∼ δ−α or ∼ exp(αδ−1) for universal degrees of
diverge α, the theory is renormalizeable: δ is needed to set an absolute
scale, but dimensionless ratios are independent of it.

If limδ→0 〈X〉 / 〈X0〉 ∼ δ−α or ∼ exp(αδ−1) for αs that are 〈X〉-specific
(One α for the scalar and another for the tensor,defined below) the
theory is “trivial” , in that taking δ → 0 makes the vacuum diverge. In
this case, step (ii) of the previous section is strictly impossible.

Expectation: δ ∼ (aT0), α is what you get from dimensional analysis in the
classical limit , but something else beyond the transition



A prelude: Kovtun, Moore, Romatschke, 1104.1586
Basic idea: As viscosity decreases, energy-momentum tensor becomes
correlated by soundwaves (“infinite propagation of soundwaves” inpacts “IR
limit of Kubo formula”).

Gxyxy
R,shear−shear(ω) ≃ −iω

7Tpmax

60π2γη
+ (i+ 1)ω

3
2

7T

240πγ
3
2
η

where pmax is the maximum momentum scale and γη = η/(e+ p)
The authors analyze pmax in terms of τπ ∼ η/(Ts) , but we want to see
what happens in ideal fluids!

ηreno = ηbare +
17pmax

ηbare
e+p T (ǫ+P )2

120π2η2bare

Naively, ηreno ∼ pmax/η ∼ η−2
bare , quadratic divergence . But...



System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes via sound and vortex emission (phase space
looks more ”fractal”). Classically this process goes on until dissipation,
k ∼ η/(Ts) . By essneitally dimensional analysis, Kolmogorov has showsn

that provided η/(sT ) ≪ Leddy ≪ Lboundary , E(k) ∼
(
dE
dt

)2/3
k−5/3 For

a classical ideal fluid, it can go on forever, since δE(k) ∼ δρkcs can be
arbitrarily small for arbitrarily high k by making δρ even smaller. but for
quantum perturbations, E ≥ k so conservation of energy has to cap cascade



Now we are all set...
Cross-sections have been computed using these Feynman rules.

σTT↔TT =
1

256π

(
13

15

)
1

p2

(
p4

w0cT

)2

, σLL↔LT ∼ cT
cs

1

p2

(
p4

w0cs

)2

σLT↔LT =
1

105π

1

p2

(
p4

w0cs

)2

[1 + 7c4s] +O(cT )

σLL↔LL =
1

256π

1

p2

(
p4

w0cs

)2 [

2α2 +
4αβ

3
+

2β2

5

]

∼ 1

p2

(
p4

w0cs

)2

where p is the exchanged momentum, w0 is the microscopic enthalpy density
(= Ts) of the background fluid and α ≡ (f4/c

2
s−2f2

3/c
4
s+3c2s+2f3+c4s) =

O(1) +O(c2s) +O(c4s).

NB the singularities at cT → 0



Now we are all set...
As S.Jeon, hep-ph/9409250 at tree level, η from Kubo’s formula

η =
β

20
lim
ω→0

lim
q→0

∫

d3x dt e−iq·x+iωt 〈πlm(t,x)πlm(0)〉eq

equivalent to “Lifshitz-Landau formula”

η = # 〈p〉 〈n〉 lmfp , lmfp =
1

〈〈nσ〉〉

where

〈X〉 = 1

N

∫

d3pX(~p)f(p, T ) , 〈〈X〉〉 = 1

N

∫

d3p1d
3p2X(~p1−~p2)f(~p1, T )f(~p



Note: What about bulk viscosity
In this approximation

ζ = #

(

c2ss −
1

3

)2

η

c2ss is the “speed of sound in a gas of sound-waves”. In an ideal gas,
F (B) = T 4

0B
4/3 the speed of sound of a sound wave is cs = 1/

√
s, but

c2ss ∼
1

lnT

(

ln
d

dT

∫

d3p exp

[

− p√
3T

])

6= 1

3

So “quantum sound” generally introduces a bulk viscosity also in an ideal
gas .
Is a thermalized N = 4 SYM Stable against 1/Nc corrections?



My calculation (Boltzmann approximation):

η =
1

3

(〈pL〉+ 〈pT 〉) (〈nL〉+ 〈nT 〉)2
〈〈σ〉〉LL↔LL + 〈〈σ〉〉LL↔LT + 2 〈〈σ〉〉LT↔LT + 〈〈σ〉〉LT↔LL + 〈〈σ〉〉TT↔TT

−
∫ Λ

0

f(β, cT , p) ln f(β, cT , p)dp = − lim
cT→0

lim
Λ→∞

∫ Λ

0

cTβp
3e−cTβpdp

where 〈〈σXY ↔AB〉〉 =
∫
d3px

∫
d3pyn(px)n(py)σXY →AB( ~px − ~py) and

s = −
∫ Λ

0

f(β, cT , p) ln f(β, cT , p)dp = − lim
cT→0

lim
Λ→∞

∫ Λ

0

cTβp
3e−cTβpdp

in the limit
cT → 0,Λ → ∞



Three possible divergences

pmax = Λ → ∞

cT → 0

g → ∞ (Microscopic degeneracy)
NOT T0: That goes away in rations like η/s

Adjusting thes three paramters, it should always possible to get a finite η/s
even if η, s both diverge differently.



At Λ → ∞ integral analytically solvable! Key term

∫

d3p1

∫

d3p2e
−c1p1/T−c2p2/T

1

(p1 − p2)2

(
(p1 − p2)

4

w0

)2

=

(
4π

(2π)3

)2

80640H(c1, c2)
T 12

w2
0

H(c1, c2) =

(
2ζ(3)ζ(9)

(
c61 + c62

)
+ 3c21c

2
2ζ(5)ζ(7)

(
c21 + c22

))

c91c
9
2



η

s
=

(
O(1)
c4s

+ O(1)

c4T

)(
O(1)
c3s

+ O(1)

c3T

)

O(1)
c3s

+ O(1)

c3T

w2
0

T 8
×

× (αLL→LLH(cs, cs) + αTT→TTH(cT , cT )+

+αLT→LTH(cT , cs) + αLL→LTH(cs, cs))
−1

Where αii functions of cT,L and dnF/dB.
Objective: counterbalance cT → 0 with g → ∞
Similar to “counterterm” in renormalization theory, except cT an infrared
deformation, not a UV one



η

s
∼ O

(
w2

0

)

c4TT
8







O (1)
︸ ︷︷ ︸

LL→LL

+
O (1)

c14T︸ ︷︷ ︸
TT→TT

+
O (1)

c9T︸ ︷︷ ︸
LT→LT

+ O (cT )
︸ ︷︷ ︸
LL→LT







−1

Remembering that

T =
w0

s
∼

√
B(dF/dB)

g



The grand result
η

s
= K0

c14T g8

B2(dF/dB)6

K0 =
ζ(3)2ζ(9)

80640

4

256π

13

45

π2

15

(
4π4

45

)−1

≃ 1.96(10−9)

The meat: If c14T g8 ∼ O (1), η/s finite and evolves with EoS.
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Result for F (B) =

{

B2/3 Ideal gas

f1B
ζ/B

f2/2−2/3
0 lQCD fit



Non-perturbative dissipation loss (“quantum” turbulence)

???

Classical hydrodynamics has infinitely many solutions arbitrarily close
together.
Could WKB-type jumps among solutions with different entropy content be
allowed? work in progress!



Example:The Dalambert problem

Euler equation
solution
Analytical Cylinder

and
asymptotic flow

Analytically solvable:

vr = U

(

1− R2

r2

)

cos θ , vθ = −U

(

1 +
R2

r2

)

sin θ



Euler equation
solution
Analytical Cylinder

and
asymptotic flow

For Energy to be the same ρ(U1)
ρ(U2)

=
(
U2
U1

)2

NB: Entropy density different for each U



Euler equation
solution
Analytical Cylinder

and
asymptotic flow

Rewrite in φI and find minima in
〈

φI
~x0,U,E

∣
∣
∣

∣
∣
∣φI

~x0
′,U ′,E′

〉

∼ exp
[
−∆SU,U ′

]

∆SU,U ′ =

∫

d4x
∑

IJ

δ2S

δφIδφJ

∣
∣
∣
∣
φI,J=φI

~x0,U,E

∑

IJ

(

φI
~x0,U,E − φI

~x′
0,U

′,E

)(

φJ
~x0,U,E − φJ

~x′
0,U



What does this mean?

Why does a quintessentially unitary theory (quantum mechanics!) set a
lower limit to dissipative processes?
How does one reconcile quantum viscosity with Von Neumann’s theorem?

d

dt
Trρ̂ ln ρ̂ = 0

My tentative answer: Quantum field theory also sets limit to scale beyond
which we measure! Quantum correlations in a many particle system
inevitably go over that scale.



What the hell does this all mean? II
Loss of unitarity at the renormalization scale. A quantum field with many
particles obeys the fully quantum equation of motion

dρ̂

dt
= i [H, ρ̂]

where ρ̂ is the density operator for the field

ρ̂(x) =
∑

k,k′

Ak,k′a
+
k,k′|0 >< 0|ak,k′

and H is the Hamiltonian density.
Like all QFT equations, this has to be regulated by a momentum scale Λ
(plus, fluid theory non-renormalizable). Generally, information should flow
across the cut-off (ie, get lost among the “fast” degrees of freedom), so
effective theory dissipative



Conclusions
Ie, what needs to be done before I have a result

Understand divergences Under what circumstances, if any, can
g, cT , pmax diverge while η/s is constant

Understanding how does this constrain the “running” of η/s with
√
B, cT

Understanding whether this makes any sense...

Work in progress... if you think you can help, Id like to hear from you!


