#### Study of the $a_0(980)$ on the lattice 31st International Symposium on Lattice Field Theory – Mainz, Germany

Marc Wagner on behalf of Abdou Abdel-Rehim

in collaboration with Constantia Alexandrou, Mattia Dalla Brida, Mario Gravina, Giannis Koutsou, Luigi Scorzato, Carsten Urbach

July 31, 2013

#### Introduction, motivation (1)

- The nonet of light scalar mesons  $(J^P = 0^+)$ 
  - $\sigma \equiv f_0(500), I = 0, 400...550 \,\mathrm{MeV},$
  - $-~\kappa \equiv K_0^*(800)$  , I=1/2 ,  $682\pm29~{\rm MeV}$  ,
  - $a_0(980)$ ,  $f_0(980)$ , I = 1,  $980 \pm 20 \text{ MeV}$ ,  $990 \pm 20 \text{ MeV}$

is poorly understood:

- All nine states are unexpectedly light (should rather be close to the corresponding  $J^P = 1^+, 2^+$  states around  $1200 \dots 1500$  MeV).
- The ordering of states is inverted compared to expectation:
  - \* E.g. in a  $q\bar{q}$  picture the I = 1 states  $a_0(980)$ ,  $f_0(980)$  must necessarily be formed by two u/d quarks, while the  $I = 1/2 \kappa$  states are made from an s and a u/d quark; since  $m_s > m_{u/d}$  one would expect  $m(\kappa) > m(a_0(980)), m(f_0(980))$ .

## Introduction, motivation (2)

- \* In a tetraquark picture the quark content could be the following:  $\kappa \equiv \bar{s}l\bar{l}l$ , while  $a_0(980), f_0(980) \equiv \bar{s}l\bar{l}s$ ; this would naturally explain the observed ordering.
- Certain decays also support a tetraquark interpretation: e.g.  $a_0(980)$  readily decays to  $K + \bar{K}$ , which indicates that besides the two light quarks required by I = 1 also an  $s\bar{s}$  pair is present.
- $\rightarrow$  Study these states by means of lattice QCD to confirm or to rule out their interpretation in terms of tetraquarks.
- Examples of heavy mesons, which are tetraquark candidates:
  - $D_{s0}^*(2317)^{\pm} (I(J^P) = 0(0^+)), D_{s1}(2460)^{\pm} (I(J^P) = 0(1^+)),$
  - charmonium states X(3872),  $Z(4430)^{\pm}$ ,  $Z(4050)^{\pm}$ ,  $Z(4250)^{\pm}$ , ...

## Outline

(1) Wilson twisted mass study of  $a_0(980)$ .

[C. Alexandrou et al. [ETM Collaboration], JHEP 1304, 137 (2013) [arXiv:1212.1418 [hep-lat]]]

- (2) Recent advances:
  - Lattice discretization changed, now Wilson + clover fermions (generated by the PACS-CS Collaboration).

[S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]

- Inclusion of disconnected diagrams.

## Part 1: Wilson twisted mass study of $a_0(980)$

#### **Tetraquark creation operators**

- $a_0(980)$ :
  - Quantum numbers  $I(J^{PC}) = 1(0^{++})$ .
  - Mass  $980 \pm 20$  MeV.
- Tetraquark creation operators:
  - Need two light quarks due to I = 1, e.g.  $u\bar{d}$ .
  - $a_0(980)$  decays to  $KK \dots$  suggests an  $s\bar{s}$  component.
  - Molecule type (models a bound  $K\bar{K}$  state):

$$\mathcal{O}_{a_0(980)}^{Kar{K} ext{ molecule }} = \sum_{\mathbf{x}} \Big( ar{s}(\mathbf{x}) \gamma_5 u(\mathbf{x}) \Big) \Big( ar{d}(\mathbf{x}) \gamma_5 s(\mathbf{x}) \Big).$$

- Diquark type (models a bound diquark-antidiquark):

$$\mathcal{O}_{a_0(980)}^{\mathsf{diquark}} = \sum_{\mathbf{x}} \left( \epsilon^{abc} \bar{s}^b(\mathbf{x}) C \gamma_5 \bar{d}^{c,T}(\mathbf{x}) \right) \left( \epsilon^{ade} u^{d,T}(\mathbf{x}) C \gamma_5 s^e(\mathbf{x}) \right).$$

## **Two-particle creation operators (1)**

• There are two-particle states, which have the same quantum numbers as  $a_0(980)$ ,  $I(J^{PC}) = 1(0^{++})$ ,

$$-K + \overline{K} (m(K) \approx 500 \,\mathrm{MeV}),$$

 $-\eta_s + \pi \ (m(\eta_s \equiv \bar{s}\gamma_5 s) \approx 700 \text{ MeV}, \ m(\pi) \approx 300 \text{ MeV}$  in our lattice setup),

which are both around the expected  $a_0(980)$  mass  $980 \pm 20$  MeV.

• To determine, whether there is a bound  $a_0(980)$  tetraquark state, we need to resolve the above listed two-particle states  $K + \bar{K}$  and  $\eta_s + \pi$  and check, whether there is an additional 3rd state in the mass region around  $980 \pm 20$  MeV; to this end we need operators of two-particle type.

## **Two-particle creation operators (2)**

- Two-particle operators:
  - $\text{Two-particle } K + \bar{K} \text{ type:} \\ \mathcal{O}_{a_0(980)}^{K+\bar{K} \text{ two-particle}} = \Big(\sum_{\mathbf{x}} \bar{s}(\mathbf{x})\gamma_5 u(\mathbf{x})\Big)\Big(\sum_{\mathbf{y}} \bar{d}(\mathbf{y})\gamma_5 s(\mathbf{y})\Big).$
  - Two-particle  $\eta_s + \pi$  type:

$$\mathcal{O}_{a_0(980)}^{\eta_s+\pi ext{ two-particle }} = \Big(\sum_{\mathbf{x}} ar{s}(\mathbf{x}) \gamma_5 s(\mathbf{x}) \Big) \Big(\sum_{\mathbf{y}} ar{d}(\mathbf{y}) \gamma_5 u(\mathbf{y}) \Big).$$

#### Wilson twisted mass lattice setup

- Gauge link configurations generated by the ETM Collaboration. [R. Baron *et al.*, JHEP 1006, 111 (2010) [arXiv:1004.5284 [hep-lat]]]
- 2+1+1 dynamical Wilson twisted mass quark flavors, i.e. u, d, s and c sea quarks.
- Iwasaki gauge action.
- Lattice spacing  $a \approx 0.086$  fm.
- Various lattice volumes.
- Various light u/d quark masses corresponding pion masses  $m_{\pi} \approx 280 \dots 460 \text{ MeV}.$
- APE smeared links and Gaussian smeared quark fields to improve the overlap of trial states to the low lying states.
- Singly disconnected contributions neglected, i.e. no *s* quark propagation within the same timeslice.

## Numerical results $a_0(980)$ (1)

- Study all four operators ( $K\bar{K}$  molecule, diquark,  $K + \bar{K}$  two-particle,  $\eta_s + \pi$  two-particle) at the same time, extract the four lowest energy eigenstates by diagonalizing a  $4 \times 4$  correlation matrix.
  - Only two low-lying states around  $980\pm20\,{\rm MeV},$  the 2nd and 3rd excitation are  $\approx750\,{\rm MeV}$  heavier.
  - The signal of the low-lying states is of much better quality than when only considering tetraquark operators
    - ightarrow suggests that the observed low-lying states have much better overlap to the two-particle operators and are most likely of two-particle type.



## Numerical results $a_0(980)$ (2)

- When determining low-lying eigenstates from a correlation matrix, one does not only obtain their mass, but also information about their operator content, i.e. which percentage of which operator is present in an extracted state:
  - $\rightarrow$  The ground state is a  $\eta_s + \pi$  state ( $\gtrsim 95\%$  two-particle  $\eta_s + \pi$  content).
  - $\rightarrow$  The first excitation is a  $K+\bar{K}$  state (  $\gtrsim\!95\%$  two-particle  $K+\bar{K}$  content).



## Numerical results $a_0(980)$ (3)

- What about the 2nd and 3rd excitation? ... Are these tetraquark states? ... What is their nature?
- Two-particle states with one relative quantum of momentum (one particle has momentum  $+p_{\min} = +2\pi/L$  the other  $-p_{\min}$ ) also have quantum numbers  $I(J^{PC}) = 1(0^{++})$ ; their masses can easily be estimated:
  - $p_{\min} = 2\pi/L \approx 715 \text{ MeV}$  (the results presented correspond to the small lattice with spatial extension L = 1.73 fm);
  - $m(K(+p_{\min}) + \bar{K}(-p_{\min})) \approx 2\sqrt{m(K)^2 + p_{\min}^2} \approx 1750 \text{ MeV};$  $- m(\eta(+p_{\min}) + \pi(-p_{\min})) \approx \sqrt{m(\eta)^2 + p_{\min}^2} + \sqrt{m(\pi)^2 + p_{\min}^2} \approx 1780 \text{ MeV};$

these estimated mass values are consistent with the observed mass values of the 2nd and 3rd excitation

 $\rightarrow$  suggests to interpret these states as two-particle states.



## Numerical results $a_0(980)$ (4)

#### • Summary:

- In the  $a_0(980)$  sector (quantum numbers  $I(J^{PC}) = 1(0^{++})$ ) we do not observe any low-lying (mass  $\leq 1750 \text{ MeV}$ ) tetraquark state, even though we employed operators of tetraquark structure ( $K\bar{K}$  molecule, diquark).
- The experimentally measured mass for  $a_0(980)$  is  $980 \pm 20$  MeV.
- Conclusion:  $a_0(980)$  does not seem to be a strongly bound tetraquark state (either of molecule or of diquark type) ... maybe an ordinary quark-antiquark state or a rather unstable resonance.

## Part 2: Recent advances

#### Wilson + clover lattice setup

- Gauge link configurations generated by the PACS-CS Collaboration.
  [S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]
- 2+1 dynamical Wilson + clover quark flavors, i.e. u, d and s sea quarks.
  → In contrast to twisted mass parity and isospin are exact symmetries, i.e. no pion and kaon mass splitting, easy separation of P = +, states, ...
- Iwasaki gauge action.
- Lattice spacing  $a \approx 0.09$  fm, lattice volume  $(L/a)^3 \times T/a = 32^3 \times 64$ .
- Light u/d quark masses corresponding to pion masses  $m_{\pi} \approx 150 \text{ MeV}$  and  $m_{\pi} \approx 300 \text{ MeV}$ .

 $\rightarrow$  Computations close to physically light u/d quark masses possible.

- APE smeared links and Gaussian smeared quark fields to improve the overlap of trial states to the low lying states.
- Singly disconnected contributions included.
  - $\rightarrow$  s quark propagation within the same timeslice.

# Singly disconnected diagrams (1)

- In our previous Wilson twisted mass study of  $a_0(980)$  we neglected singly disconnected contributions:
  - $\rightarrow$  We could not consider a  $q\bar{q}$  operator,

$$\mathcal{O}^{qar{q}}_{a_0(980)} \;\;=\;\; \sum_{\mathbf{x}} \Big( ar{d}(\mathbf{x}) u(\mathbf{x}) \Big),$$

because cross correlations between this operator and any of the four-quark operators  $\mathcal{O}_{a_0(980)}^{K\bar{K}}$  molecule,  $\mathcal{O}_{a_0(980)}^{\text{diquark}}$ ,  $\mathcal{O}_{a_0(980)}^{K+\bar{K}}$  two-particle or  $\mathcal{O}_{a_0(980)}^{\eta_s+\pi}$  two-particle correspond to singly disconnected diagrams.

 $\rightarrow$  Also correlations between the four-quark operators include singly disconnected diagrams; therefore, we introduced a source of systematic error, which is difficult to estimate or to control.



# Singly disconnected diagrams (2)

- Technical aspects of computing singly disconnected diagrams:
  - Blue: point-to-all propagators applicable.
  - Red: due to  $\sum_{\mathbf{x}}$  , timeslice-to-all propagators needed.
  - Timeslice-to-all propagators can be estimated stochastically.
  - Using several stochastic timeslice-to-all propagators results in a poor signal-to-noise ratio.
  - $\rightarrow$  Combine three point-to-all (blue) and one stochastic timeslice-to-all (red) propagator.



## Singly disconnected diagrams (3)

- Effective masses from a  $2 \times 2$  correlation matrix  $(\mathcal{O}_{a_0(980)}^{q\bar{q}})$  and  $\mathcal{O}_{a_0(980)}^{K\bar{K}}$  molecule):
  - Lowest (two) energy level(s) consistent with K + K,  $\eta + \pi$  and a possibly existing additional  $a_0(980)$  state.
  - For physically interesting statements we also need to include  $\mathcal{O}_{a_0(980)}^{\text{diquark}}$ ,  $\mathcal{O}_{a_0(980)}^{K+\bar{K} \text{ two-particle}}$  and  $\mathcal{O}_{a_0(980)}^{\eta_s+\pi \text{ two-particle}}$  (work in progress).



## Outlook

- Enlarge correlation matrices such that
  - $-~q\bar{q}$  operators,
  - tetraquark operators (mesonic molecules, diquark-antidiquark pairs),
  - two-meson operators

are included.

- Perform computations at pion mass  $m_{\pi} \approx 150 \text{ MeV}$ .
- Address various physical questions/systems (tetraquark candidates with different flavor structure, search for additional bound states, ...).