The QCD phase diagram at strong coupling including auxiliary field fluctuations

Research talk about severity of the sign problem at strong coupling to investigate the QCD phase diagram on a large size lattice.

T. Ichihara^{A,B}, T. Z. Nakano^C, and A. Ohnishi^B Kyoto Univ.^A, YITP^B, Kozo Keikaku Engineering Inc.^C Finite chemical potential region

- The sign problem
 - Caused by chemical potential
 - Complexity of the weight
 - Weight cancellation
 - Difficulty in studying finite chemical potential region

Avoiding or weakening the sign problem

- Ways to study finite chemical potential region
 - Reweighting Z. Fodor, S. D. Katz, (2002)...
 - Taylor expansion C. R. Allton *et al* (2002,2005) R. V. Gavai, S. Gupta (2008), S. Ejiri et al., (2010) ...
 - Imaginary chemical potential M. G. Alford et al,. (1999). P. de Forcrand and O. Philipsen, (2002)...
 - Complex Langevin Matsui and Nakamura (1987) G. Aarts et al. (2010) ...
 - Canonical approach Miller and Redlich (1987) Engels et al. (1999) A.Li, Meng et al. (2010) ...
 - Strong coupling

^{2013/8/1}etc.

Lattice 2013, Mainz, Germany

Sign problem & Strong coupling lattice QCD

- Characteristics
 - Starting from lattice QCD
 - $-1/g^2$ expansion
 - Expansion by inverse coupling

- $S_{\text{LQCD}} = S_{\text{F}} + S_{\text{G}}$ $\boxed{\frac{1}{a^2} \int U \sim F_{\mu\nu}^2}$
- No sign problem in the mean field approximations

Chiral transition

N. Kawamoto and J. Smit (1981), P. H. Damgaard, N. Kawamoto and K. Shigemoto(1984) etc.

- The QCD phase diagram
 Bilic, Karsch, Redlich ('92), Fukushima ('04), Nishida ('04) etc.
- "The sign problem" with fluctuations
 - Monomer-Dimer-Polymer simulations
 W. Unger, Ph. de Forcrand,

J. Phys. G: Nucl. Part. Phys. 38 124190 (2011)

- Auxiliary field Monte-Carlo method A. Ohnishi, T. I. and T. Z. Nakano : arXiv:1211.2282

Severity of the sign problem

• $\Delta f (= f^{\text{full}} - f^{\text{p.q.}})$, the difference of the free energy density in full and phase quenched MC simulations

$$\begin{split} e^{-\Omega\Delta f} &= \frac{Z_{\text{full}}}{Z_{\text{p.q.}}} & Z = \exp\left[-F/T\right] = \exp\left[-\Omega f\right] \\ &\Omega: \text{space-time volume} \\ &= \frac{\int \mathcal{D}\sigma \mathcal{D}\pi e^{-S_{\text{eff}}^{\text{p.q.}}} e^{i\theta}}{\int \mathcal{D}\sigma \mathcal{D}\pi e^{-S_{\text{eff}}^{\text{p.q.}}}} = \left\langle e^{i\theta} \right\rangle_{\text{p.q.}} \end{split}$$

- Case : lower reliability in numerical simulations
 - 1. Large $\Delta f (= f^{\text{full}} f^{\text{p.q.}})$
 - 2. Large lattice size
 - ⇒ small average phase factor
 - → severe weight cancellation

- Two ways at strong coupling
 - Auxiliary field Monte-Carlo (AFMC) method
 - Saturated value for a lattice larger than $6^3 \times N_{\tau}$ lattice
 - Δf (AFMC(Saturated value)) $\cong 1.0 \times 10^{-3}$
 - Monomer-Dimer-Polymer (MDP) simulation
 - $\Delta f(MDP) \cong 0.5 \times 10^{-3}$

• AFMC has more sever cancellation $- \Delta f(AFMC) \cong 2 \times \Delta f(MDP)$

> we need to improve AFMC method for a larger lattice 2013/8/1 Lattice 2013, Mainz, Germany

- Two ways at strong coupling
 - Auxiliary field Monte-Carlo (AFMC) method
 - Saturated value for a lattice larger than $6^3 \times N_{\tau}$ lattice
 - Δf (AFMC(Saturated value)) $\cong 1.0 \times 10^{-3}$
 - Monomer-Dimer-Polymer (MDP) simulation
 - $\Delta f(MDP) \cong 0.5 \times 10^{-3}$

• AFMC has more sever cancellation $- \Delta f(AFMC) \cong 2 \times \Delta f(MDP)$

> we need to improve AFMC method for a larger lattice 2013/8/1 Lattice 2013, Mainz, Germany

6

- Two ways at strong coupling
 - Auxiliary field Monte-Carlo (AFMC) method
 - Saturated value for a lattice larger than $6^3 \times N_{\tau}$ lattice
 - Δf (AFMC(Saturated value)) $\cong 1.0 \times 10^{-3}$
 - Monomer-Dimer-Polymer (MDP) simulation
 - $\Delta f(MDP) \cong 0.5 \times 10^{-3}$

• AFMC has more sever cancellation $- \Delta f(AFMC) \cong 2 \times \Delta f(MDP)$

we need to improve AFMC method for a larger lattice 2013/8/1 Lattice 2013, Mainz, Germany

- Two ways at strong coupling
 - Auxiliary field Monte-Carlo (AFMC) method
 - Saturated value for a lattice larger than $6^3 \times N_{\tau}$ lattice
 - Δf (AFMC(Saturated value)) $\cong 1.0 \times 10^{-3}$
 - Monomer-Dimer-Polymer (MDP) simulation
 - $\Delta f(MDP) \cong 0.5 \times 10^{-3}$

- AFMC has more sever cancellation
 - $-\Delta f(\mathsf{AFMC}) \cong 2 \times \Delta f(\mathsf{MDP})$

we need to reduce Δf in AFMC method for a larger lattice 2013/8/1 Lattice 2013, Mainz, Germany

Purpose

- To discuss the source of "the sign problem" in Auxiliary field Monte-Carlo (AFMC) method
- To explore the possibility of applying AFMC method on a large lattice

The effective action & AFMC method

• Effective action for Auxiliary fields Faldt and Petersson (1986)

$$S_{\text{eff}}^{\text{AF}} = \frac{L^3}{4N_c} \sum_{\boldsymbol{k},\tau,f(\boldsymbol{k})>0} f(\boldsymbol{k}) \left[|\sigma_{\boldsymbol{k},\tau}|^2 + |\pi_{\boldsymbol{k},\tau}|^2 \right] - \sum_{\boldsymbol{x}} \log \left[X_{N_\tau}(\boldsymbol{x})^3 - 2X_{N_\tau}(\boldsymbol{x}) + 2\cosh(N_c\mu/T) \right]$$

•
$$X_{N_{\tau}} = X_{N_{\tau}} [m_x], \quad m_x = m + \frac{1}{4N_c} \sum_{i} (\sigma + i\epsilon\pi)_{x \pm \hat{j}}$$
 complex

- Smaller phase at larger μ The Auxiliary field Monte Carle (AENAC) method $f(k) = \sum_{j=1}^{a} \cos k_j$ $\epsilon = (-1)^{x_0 + \dots + x_d}$
- The Auxiliary field Monte-Carlo (AFMC) method

Strong coupling lattice QCD action

- Procedure in the strong coupling limit
 - Unrooted staggered fermion, anisotropic lattice, strong coupling limit

$$S_{\text{SCL-LQCD}} = \frac{1}{2} \sum_{\nu=0}^{d} \sum_{x} \left[\eta_{\nu,x}^{+} \bar{\chi}_{x} U_{\nu,x} \chi_{x+\hat{\nu}} - \eta_{\nu,x}^{-} (\text{H.C.}) \right] \quad \text{Kinetic}$$

$$+m\sum_{x} \bar{\chi}_{x}\chi_{x}$$
 Mass

$$\eta_{\nu,x}^{\pm} = \left(\gamma e^{\pm \mu a_{\tau}}, (-1)^{x_1 + \dots + x_{\nu-1}} \right)$$

- 1/d expansion, U_i integration N.Bilic et al. (1992), G. Faldt et al. (1986)

$$S_{\text{eff}} = \frac{1}{2} \sum_{x} \bigwedge \left[e^{\mu a_{\tau}} \bar{\chi}_{x} U_{0} \chi_{x+\hat{0}} - e^{-\mu a_{\tau}} \bar{\chi}_{x+\hat{0}} U_{0}^{\dagger} \chi_{x} \right]$$

$$Temporal U_{0} \bigvee \chi \qquad V_{0}^{\dagger}$$

$$Kinetic \qquad \downarrow_{\bar{\chi}} \bigvee U_{0}^{\dagger}$$

$$-\frac{1}{4N_{c}} \sum_{x,j} M_{x} M_{x+\hat{j}}$$

$$+m \sum_{x} M_{x}$$

$$Mass \qquad \bigcirc m$$

 $M_x = \bar{\chi}_x \chi_x$

Lattice 2013, Mainz, Germany

 \mathbf{V}^{\dagger}

m

 U^+ U^-

The AFMC method at strong coupling

- Extended HS transformation
 - Taking different value at each site
 - Necessity to introduce complex term $exp [\alpha AB] = \int \mathcal{D} [\phi, \varphi] exp \left[-\alpha \left[\phi^2 + \varphi^2 + (A+B)\varphi - i(A-B)\phi \right] \right]$
- Bosonization

 $M_x \quad M_{x+j}$

4 fermi-like $M_x = \bar{\chi}_x \chi_x$

Effective mass

$$m_x = m + \frac{1}{4N_c} \sum_{j} \left(\sigma + i\epsilon\pi\right)_{x\pm\hat{j}}$$

 $M_x \quad M_{x+j}$ 4 fermi-like $M_x = \bar{\chi}_x \chi_x$

$(+ D)\varphi - [A - D)\varphi$

Auxiliary fields

$$\sigma_{x} = -\langle \bar{\chi}_{x} \chi_{x} \rangle$$

$$\pi_{x} = \langle i\epsilon \bar{\chi}_{x} \chi_{x} \rangle$$

$$\epsilon = (-1)^{x_{0} + \dots + x_{d}}$$

$$Z = \int \mathcal{D} [\sigma, \pi] e^{-S_{\text{eff}}}$$

The source of the "sign problem"

- Integrating out numerically?
 - Complex effective mass causes complex weight

$$m_x = m + \frac{1}{4N_c} \sum_{j} \frac{(\sigma + i\epsilon\pi)_{x\pm\hat{j}}}{\epsilon = (-1)^{x_0 + \dots + x_d}}$$

- High momentum auxiliary fields
 - Low momentum
 - Cancellation mechanism
 - Small phase
 - High momentum
 - No cancellation mechanism
 - Severe weight cancellation (?)
 - By We confirm qualitatively

Results

Reservations

- Unrooted staggered fermion
- anisotropic lattice
- chiral limit
- All results are in lattice unit
- Jack knife methods

Jack knife error

Auto Correlation

40

50

Evaluation of error bars

Jack knife method

 $8^3 \times 8, \mu/T = 0.8,$

 $T = 0.85, \Lambda = 0.00 \text{ data}$

- Error bars
 - taking plateau value after auto correlation disappear

Auxiliary field momentum cut off

- High momentum $\sum_{j=1}^{j=1}$ \equiv High momentum modes of spatial kinetic momentum
- cutting off high momentum auxiliary field components

Reductions of weight cancellations?

- Qualitative confirmations
 - Average phase factor goes to 1
 - Weight cancellations weaken

e.g. size $8^3 \times 8$, $\mu/T = 0.6$

 $\sin^2 k_i$

• Results of size $8^3 \times 8$, $\mu/T = 0.6$

chiral cond. L8N8, $\mu/T=0.6$ Chiral condensate : $\phi = \sqrt{\sigma^2 + \pi^2}$ **Ф**1.2 because of chiral limit ∆=2.50 ∆=2 00 =1.50increasing around phase 0.8 chiral cond $\Lambda = 1.00$ ∆=0.50 ⊦ boundary 0.6 ∧=0.00 ⊢ **a**lmost no cut-off dependence 0.4 $\phi(\Lambda = \text{full}) \simeq \phi(\Lambda \ge 0.0)$ 0.2 0.6 0.7 8.0 0.9 13 12 ρ L8N8, μ/T=0.6 1.8 Quark number density 1.6 $\Lambda = 2.50$ 1.4 increasing around phase $\Lambda = 1.50$ 1.2 Λ=1.00 ► $\Lambda = 0.50$ boundary ∧=0.00 ⊷● 0 0.8 \Box same value as long as $\Lambda \gtrsim 2.0$ 0.6 $\rho(\Lambda = \text{full}) \simeq \rho(\Lambda \ge 2.0)$ 0.4 0.2 $\partial \log Z$ 0 1.1 1.2 13 0.6 0.7 0.8 0.9

Lattice 2013, Mainz, Germany

 $N_{\tau}L^3$

17

Susceptibilities

• Results of size $8^3 \times 8$, $\mu/T = 0.6$

Cut-off dependence of each quantities

 Critical cut-off where average phase factor becomes large

& order parameters do not depend on cut-off $\Phi(\Lambda = \text{full}) \simeq \Phi(\Lambda > \Lambda_c)$

These results indicate

we could investigate phase transition phenomena on a large lattice by cutting off or by approximately integrating out the high momentum auxiliary fields.

Summary

The source of the "sign problem" in AFMC method
 – High momentum auxiliary field components

- Cutting off high momentum auxiliary fields
 - Weight cancellations weaken
 - The region where quantities of phase transition phenomena do not depend on cut-off
- We try for a much larger lattice