The Phase Diagram of Strong Coupling Lattice QCD including Gauge Corrections

Wolfgang Unger, Uni Frankfurt with Philippe de Forcrand, Jens Langelage, Kohtaroh Miura, Owe Philipsen

Lattice 2013, Mainz 1.08.2013

Why Strong Coupling Lattice QCD?

Look at Lattice QCD in a regime where the sign problem can be made mild: Strong Coupling Limit: $\beta = \frac{2N_c}{\rho^2} \rightarrow 0$

- allows to integrate out the gauge fields completely, as link integration factorizes
 ⇒ no fermion determinant
- drawback: strong coupling limit is converse to asymptotic freedom, lattice is maximally coarse

Strong coupling LQCD shares important features with QCD:

- exhibits "confinement", only color singlet degrees of freedom survive:
 - mesons (represented by monomers and dimers)
 - baryons (represented by oriented self-avoiding loops)

• and spontaneous chiral symmetry breaking/restoration: (restored at T_c) \Rightarrow SC-LQCD is a great laboratory to study the full (μ , T) phase diagram

Why Strong Coupling Lattice QCD?

Look at Lattice QCD in a regime where the sign problem can be made mild: Strong Coupling Limit: $\beta = \frac{2N_c}{r^2} \rightarrow 0$

- allows to integrate out the gauge fields completely, as link integration factorizes
 ⇒ no fermion determinant
- drawback: strong coupling limit is converse to asymptotic freedom, lattice is maximally coarse

Strong coupling LQCD shares important features with QCD:

- exhibits "confinement", only color singlet degrees of freedom survive:
 - mesons (represented by monomers and dimers)
 - baryons (represented by oriented self-avoiding loops)

• and spontaneous chiral symmetry breaking/restoration: (restored at T_c) \Rightarrow SC-LQCD is a great laboratory to study the full (μ , T) phase diagram

SC-LQCD is a 1-parameter deformation of QCD in β

Wolfgang Unger, University of Frankfurt

The phase diagram of SC-LQCD

Chiral transition and nuclear transition

This talk: focus on chiral transition and nuclear transition in the chiral limit

Chiral symmetry in SC-LQCD with staggered fermions for $N_{\rm f} = 1$:

 $U(1)_V \times U(1)_{55}: \qquad \psi(x) \mapsto e^{i\epsilon(x)\theta_A + i\theta_V}\psi(x), \quad \epsilon(x) = (-1)^{x_1 + x_2 + x_3 + x_4}$

- $U(1)_V$ baryon number conserved
- U(1)₅₅ chiral symmetry spontaneously broken at low temperatures/densities
- expected to be O(2) 2nd order ($\mu = 0$)
- note: no chiral anomaly at $\beta = 0$
- Nuclear Transition (T=0):
 - baryon crystal forms
 - chiral symmetry restored
 - expected to be 1st order

Long History of Staggered SC-LQCD

Mean field (1/d expansion): 1983: development of the technique [Kluberg-Stern, Morel, Petersson] 1985: first finite density analysis [Damgaard, Hochberg & Kawamoto] 1992: $T_c(\mu = 0) = 5/3$, $\mu_c(T = 0) = 0.66$ [Bilic et al.] 1995: entropy per baryon [Bilic & Cleymans] 2004: full phase diagram and location of (tri)crital point [Nishida] 2009: include $\mathcal{O}(\beta)$ corrections [Ohnishi *et al.*] Monte Carlo: 1984: formulation as a dimer system [Rossi & Wolff] 1989: first finite density results with MDP algorithm, $aT_c(\mu = 0) = 1.4$, $a\mu_c(T = 0) = 0.63$ [Karsch & Mütter] 2003: first Worm algorithm applied to U(3): fast, easy to do chiral limit [Adams & Chandrasehkaran] 2010: full phase diagram and nuclear potential for SU(3) [de Forcrand & Fromm] 2011: continuous Euclidean time methods [de Forcrand & U.] 2011: include $\mathcal{O}(\beta)$ corrections for U(3) [Langelage, de Forcrand, Fromm, Miura, Philipsen, U.] Local Metropolis, 43x2 at µ, m = 0.025 Worm, same parameter set c^a 0.5 e^m 0.5 1.5 1 1.5 3 3.5 # iterations x 10 x 10⁴

Strong Coupling Partition Function

After $SU(N_c)$ gauge link integration only hadronic d.o.f. survive:

$$M_x = \bar{\chi}\chi(x), \quad B_x = \frac{1}{N_c!} \epsilon_{i_1 \dots i_{N_c}} \chi_{i_1} \dots \chi_{i_{N_c}}$$

Exact rewriting after Grassmann integration: Mapping to a MDP representation:

$$\mathcal{Z}(m_{q},\mu,\gamma) = \sum_{\{k,n,\ell\}} \underbrace{\prod_{b=(x,\mu)} \frac{(N_{c}-k_{b})!}{N_{c}!k_{b}!} \gamma^{2k_{b}\delta_{\mu}0}}_{\text{meson hoppings } M_{x}M_{y}} \underbrace{\prod_{x} \frac{N_{c}!}{n_{x}!} (2am_{q})^{n_{x}}}_{\text{chiral condensate } M_{x}} \underbrace{\prod_{\ell} w(\ell,\mu)}_{\text{baryon hoppings } \bar{B}_{x}B_{y}}$$

• Grassmann constraint:

$$n_{x} + \sum_{\hat{\mu}=\pm 0,\ldots\pm \hat{\sigma}} \left(k_{\hat{\mu}}(x) + \frac{N_{c}}{2} |\ell_{\hat{\mu}}(x)| \right) = N_{c}$$

• weight $w(\ell, \mu)$ and sign $\sigma(\ell) \in \{-1, +1\}$ for oriented baryonic loop ℓ depends on loop geometry

Strong Coupling Partition Function

After $SU(N_c)$ gauge link integration only hadronic d.o.f. survive:

$$M_x = \bar{\chi}\chi(x), \quad B_x = \frac{1}{N_c!} \epsilon_{i_1 \dots i_{N_c}} \chi_{i_1} \dots \chi_{i_{N_c}}$$

Exact rewriting after Grassmann integration: Mapping to a MDP representation:

$$\mathcal{Z}(m_{q},\mu,\gamma) = \sum_{\{k,n,\ell\}} \underbrace{\prod_{b=(x,\mu)} \frac{(N_{c}-k_{b})!}{N_{c}!k_{b}!} \gamma^{2k_{b}\delta_{\mu}0}}_{\text{meson hoppings } M_{x}M_{y}} \underbrace{\prod_{x} \frac{N_{c}!}{n_{x}!} (2am_{q})^{n_{x}}}_{\text{chiral condensate } M_{x}} \underbrace{\prod_{\ell} w(\ell,\mu)}_{\text{baryon hoppings } \bar{B}_{x}B_{y}}$$

• Grassmann constraint:

$$n_{x} + \sum_{\hat{\mu}=\pm \emptyset,\ldots\pm \hat{\theta}} \left(k_{\hat{\mu}}(x) + \frac{N_{c}}{2} |\ell_{\hat{\mu}}(x)| \right) = N_{c}$$

 weight w(ℓ, μ) and sign σ(ℓ) ∈ {−1, +1} for oriented baryonic loop ℓ depends on loop geometry

SC-LQCD Phase Diagram

Comparison of phase boundaries for $N_{\tau} = 2,4$ and $N_{\tau} \rightarrow \infty$ (continuous time), studied with Worm algorithm [hep-lat/1111.1434]

 $\bullet\,$ behavior at low μ qualitatively the same, first order transition shifts to larger $\mu\,$

• no re-entrance in continuous time (also seen by [Ohnishi *et al.* 2012] via auxilliary field Monte Carlo, see also \rightarrow talk by T.Ichihara

Connection Between Strong Coupling and Continuum Limit?

Various possible scenarios for the extension to finite β :

• back plane: strong coupling phase diagram

 \bullet front plane: continuum phase diagram ($N_{\rm f}=4)$

Questions we want to address:

- does tricritical point move to smaller or larger μ as β is increased?
- do the nuclear and chiral transition split?

Derivation of $\mathcal{O}(\beta)$ effective action

• Strong Coupling Partition function incorporating $\mathcal{O}(\beta)$ corrections:

$$Z = \int d\chi d\bar{\chi} dU e^{S_{G}+S_{F}} = \int d\chi d\bar{\chi} Z_{F} \left\langle e^{-S_{G}} \right\rangle_{U}$$
$$\left\langle O \right\rangle_{U} = \frac{1}{Z_{F}} \int dU O e^{-S_{F}}, \qquad Z_{F} = \int dU e^{-S_{F}} = \prod_{I=(x,\mu)} z(x,\mu)$$

• plaquette expectation value before Grassmann integration:

$$\left\langle \operatorname{tr}[U_{P}+U_{P}^{\dagger}]\right\rangle_{U}=rac{1}{Z_{F}}\int dU\operatorname{tr}[U_{P}+U_{P}^{\dagger}]e^{-S_{F}}=\left(\prod_{l\in P}z_{l}\right)^{-1}\sum_{s=1}^{19}F_{P}^{s}(M,B,\overline{B})$$

Phase Diagram of SC-LQCD, for small β

Link Integrations for $\mathcal{O}(\beta)$ diagrams

One-Link integrals for links on the edge of an elementary plaquette (based on techniques from [Creutz 1978], [Azakov & Aliev 1988]):

$$J_{ik} = \underbrace{\frac{1}{3} \bar{\chi}_{k} \varphi_{i}}_{D_{1}} - \underbrace{\frac{1}{6} \underbrace{M_{\chi} M_{\varphi} \bar{\chi}_{k} \varphi_{i}}_{D_{2}} + \underbrace{\frac{1}{12} \underbrace{M_{\chi}^{2} M_{\varphi}^{2} \bar{\chi}_{k} \varphi_{i}}_{D_{3}} + \underbrace{\frac{1}{12} \epsilon_{ii_{1}i_{2}} \epsilon_{kk_{1}k_{2}} \bar{\varphi}_{i_{1}} \bar{\varphi}_{i_{2}} \chi_{k_{1}} \chi_{k_{2}}}_{B_{1}} + \underbrace{\frac{1}{32} \epsilon_{ii_{1}i_{2}} \epsilon_{kk_{1}k_{2}} M_{\chi} M_{\varphi} \bar{\varphi}_{i_{1}} \bar{\varphi}_{i_{2}} \chi_{k_{1}} \chi_{k_{2}} + \frac{7}{24} \bar{B}_{\varphi} B_{\chi} \bar{\chi}_{k} \phi_{i} + \frac{1}{48} \epsilon_{ii_{1}i_{2}} M_{\varphi} B_{\chi} \bar{\varphi}_{i_{1}} \bar{\varphi}_{i_{2}} \bar{\chi}_{k} + \frac{1}{48} \epsilon_{kk_{1}k_{2}} M_{\chi} \bar{B}_{\varphi} \chi_{k_{1}} \chi_{k_{2}} \varphi_{i}}{B_{2}} \underbrace{I_{2} - I_{2} -$$

• determine plaquette link product $P = \operatorname{Tr} J_{ik} J_{kl} J_{lm} J_{mi}$

• result can be consistently re-expressed via link weights: $w(D_k) = \frac{(N_c - k)!}{N_c!(k-1)!}$, $w(B_1) = \frac{1}{N_c!(N_c-1)!}$, $w(B_2) = \frac{(N_c-1)!}{N_c!}$ and site weights: $v_1 = N_c!$, $v_2 = (N_c - 1)!$, $v_3 = 1$

• Grassman constraint on sites touching a plaquette altered $N_{
m c}
ightarrow N_{
m c} + 1$

Classification of $\mathcal{O}(\beta)$ Diagrams

Diagrams classified by external legs (monomers or external dimers)

Wolfgang Unger, University of Frankfurt

The phase diagram of SC-LQCD

Crosschecks at Finite Temperature

Croscheck on small lattices:

- comparison between HMC and MDP algorithms agrees well
- gauge observables are correctly obtained for various am_q , aT:

Gauge Observables at Zero Density

• Polyakov loop expectation value: ratio of partition function w/o static quark *Q*, measured via reweighting from the SC-ensemble:

$$\langle L \rangle = \frac{\int d\bar{\chi} d\chi \langle L \rangle_U Z_F}{\int d\bar{\chi} d\chi Z_F} \sim e^{-(F_Q - F_0)/T} = \frac{Z_Q}{Z}, \qquad L(\vec{x}) = \operatorname{Tr} J_{N_\tau, 1}(\vec{x}) \prod_{t=1}^{N_\tau} J_{t,t+1}(\vec{x})$$

 $\bullet~\langle L \rangle$ and $\langle P_t \rangle$ are sensitive to the chiral transition

• $\langle L \rangle$ rises significantly, indicating "deconfinement"

Gauge Observables at non-zero Density

- Scan at finite density in polar coordinates $(aT, a\mu) \mapsto (\rho, \phi)$
- Polyakov loop behaves similar to baryon number density, but also receives contributions from mesons

Chiral susceptibility in the chiral limit

Full chiral susceptibility: $\chi = \frac{1}{V} \frac{\partial^2}{\partial (2am_q)^2} \log Z$ can be expressed in terms of monomers: $\chi = \frac{1}{(2am_q)^2 L^3 N_t} \left(\left\langle N_M^2 \right\rangle - \left\langle N_M \right\rangle^2 - \left\langle N_M \right\rangle \right) = \frac{1}{L^3 N_t} \left(\sum_{x_1, x_2} G(x_1, x_2) - \frac{\left\langle N_M \right\rangle^2}{(2am_q)^2} \right)$ In chiral limit:

- $\chi \sim \left< (ar\psi\psi)^2 \right>$ is measured with high precision via Worm estimator ${\cal G}(x_1,x_2)$
- χ has no peak, FSS via: $\chi_L/L^{\gamma/\nu}(t) = A + BtL^{1/\nu}, \quad t = \frac{T-T_c}{T_c}$

with 3d O(2) critical exponents

Taylor Expansion for the Susceptibility

For fermionic observables, the leading order β correction can be measured:

• obtain the slope of the transition temperature w.r.t. β from a Taylor coefficient:

$$\chi(eta) = \chi_0 + eta oldsymbol{c}_\chi^{(1)} + \mathcal{O}(eta^2) \quad ext{with} \quad \chi_0 = rac{Z_2}{Z},$$

$$c_{\chi}^{(1)} = \left. \frac{\partial}{\partial\beta} \frac{Z_2(\beta)}{Z(\beta)} \right|_{\beta=0} = \left\langle (\bar{\psi}\psi)^2 P \right\rangle - \left\langle (\bar{\psi}\psi)^2 \right\rangle \langle P \rangle$$

• Z_2 : 2-monomer sector sampled by $G(x_1, x_2)$ via Worm,

necesssary condition: c⁽¹⁾_{\lambda} needs to obey finite size scaling to modify aT_c
one can show that in the thermodynamic limit:

$$c_\chi^{(1)}\simeq (c_1+c_2L^{1/
u}+c_3t) \quad ext{ in the vicinity of } t=0,$$

• the shift in T_c is then related to scaling function parameters A, B and c_2 :

$$\Delta a T_c(eta) \doteq -eta a T_c \frac{A}{B} c_2$$

Results on the Slope at Zero and non-Zero Density

• We obtain for the slope: $\frac{\partial}{\partial\beta} a T_c(\beta) \simeq -0.24(3)$ at $\mu = 0$

Results on the Slope at Zero and non-Zero Density

• We obtain for the slope: $\frac{\partial}{\partial\beta} a T_c(\beta) \simeq -0.15(2)$ at $\mu/T = 0.29$

Corrections to the SC-Phase diagram

• The slope vanishes at the tricritial point and along the first order line

Conclusions

Achievements:

- correct average plaquette and Polyakov loop reproduced at β = 0 (checked with HMC)
- all measurements extended to finite μ
- $\langle L \rangle$ and $\langle P_t \rangle$ are sensitive to the chiral transition
- **slope of** *aT^c* determined at finite density up to the tricritical point

Further Goals:

• $\mathcal{O}(\beta^2)$ corrections needed

Comparison with mean field results by Miura *et. al*, Phys. Rev. D **80** (2009) 074034 (2009): good agreement

 $\bullet\,$ determine whether the chiral and nuclear transition split at finite $\beta\,$

Conclusions

Achievements:

- correct average plaquette and Polyakov loop reproduced at β = 0 (checked with HMC)
- all measurements extended to finite μ
- $\langle L \rangle$ and $\langle P_t \rangle$ are sensitive to the chiral transition
- **slope of** *aT_c* determined at finite density up to the tricritical point

Further Goals:

• $\mathcal{O}(\beta^2)$ corrections needed

Comparison with mean field results by Miura *et. al*, Phys. Rev. D **80** (2009) 074034 (2009): good agreement

 $\bullet\,$ determine whether the chiral and nuclear transition split at finite $\beta\,$

Thank you for your attention!

Wolfgang Unger, University of Frankfurt

The phase diagram of SC-LQCD

Mainz, 1.08.2013 18 / 18

Backup: SC-LQCD at finite temperature

How to vary the temperature?

• $aT = 1/N_{\tau}$ is discrete with N_{τ} even

• $aT_c \simeq 1.5$, i.e. $N_\tau^c < 2 \implies$ we cannot address the phase transition! Solution: introduce an anisotropy γ in the Dirac couplings:

$$\mathcal{Z}(m_q, \mu, \gamma, N_{\tau}) = \sum_{\{k, n, l\}} \prod_{b=(x, \mu)} \frac{(3-k_b)!}{3!k_b!} \gamma^{2k_b\delta_{\mu 0}} \prod_x \frac{3!}{n_x!} (2am_q)^{n_x} \prod_l w(\ell, \mu)$$

Should we expect $a/a_{\tau} = \gamma$, as suggested at weak coupling?

• No: meanfield predicts $a/a_{\tau} = \gamma^2$, since $\gamma_c^2 = N_{\tau} \frac{(d-1)(N_c+1)(N_c+2)}{6(N_c+3)}$

 \Rightarrow sensible, N_{τ} -independent definition of the temperature:

$$aT\simeq rac{\gamma^2}{N_ au}$$

• Moreover, SC-LQCD partition function is a function of γ^2

However: precise correspondence between a/a_{τ} and γ^2 not known

Backup: The Fate of the Nuclear and Chiral Transition

Strong Coupling Limit:

- finite temperature chiral transition takes place when spatial dimers vanish
- nuclear and chiral transition coincide: $\langle \bar{\chi}\chi
 angle$ vanishes as baryonic crystal forms

Backup: The Fate of the Nuclear and Chiral Transition

Strong Coupling Limit:

- finite temperature chiral transition takes place when spatial dimers vanish
- nuclear and chiral transition coincide: $\langle \bar{\chi}\chi
 angle$ vanishes as baryonic crystal forms

Backup: The Fate of the Nuclear and Chiral Transition

Strong Coupling Limit:

- finite temperature chiral transition takes place when spatial dimers vanish
- ullet nuclear and chiral transition coincide: $\langle \bar\chi\chi\rangle$ vanishes as baryonic crystal forms

Possibility for $\beta > 0$:

• chiral transition takes place at larger μ_c than nuclear transition, as chiral condensate can be non-zero even though baryonic crystal has formed

Backup: The Fate of the Nuclear and Chiral Transition

Strong Coupling Limit:

- finite temperature chiral transition takes place when spatial dimers vanish
- ullet nuclear and chiral transition coincide: $\langle \bar\chi\chi\rangle$ vanishes as baryonic crystal forms

Possibility for $\beta > 0$:

 chiral transition takes place at larger μ_c than nuclear transition, as chiral condensate can be non-zero even though baryonic crystal has formed

Backup: The Fate of the Nuclear and Chiral Transition

Strong Coupling Limit:

- finite temperature chiral transition takes place when spatial dimers vanish
- ullet nuclear and chiral transition coincide: $\langle \bar\chi\chi\rangle$ vanishes as baryonic crystal forms

• chiral transition takes place at larger μ_c than nuclear transition, as chiral condensate can be non-zero even though baryonic crystal has formed

Backup Slide: SC + Plaquette Partition Function at $O(\beta)$

partition function can be expanded up to $O(1/g^{2N_c})$ as Grassmann integration terminates at this order:

$$Z = \int d\chi d\bar{\chi} Z_F \prod_P \left(1 + \frac{1}{g^2} \left(\prod_{l \in P} z_l \right)^{-1} \sum_{s=1}^{19} F_P^s + \ldots \right)$$

• new set of plaquette variables $q_P \in \{0, \dots, N_c\}$ and auxiliary variables

$$q_x = \sum_P^{x\in P} q_P \in \{0,\ldots,N_c\}, \quad q_b = \sum_P^{b\in P} q_P \in \{0,\ldots,N_c\}$$

• help to write down Z after Grassmann integration:

$$Z = \sum_{\{k,n,\ell,q\}} \prod_{b=(x,\mu)} w_b \prod_x w_x \prod_\ell w_\ell \prod_P w_P,$$

$$w_x = \frac{N_c!}{n_x!} (2am_q)^{n_x} v_i(x), \quad w_b = \frac{(N_c - k_b)!}{N_c!(k_b - q_b)!}, \quad w_P = g^{-2q_b}$$

$$n_x + \sum_{\hat{\mu} = \pm \hat{0}, \dots \pm \hat{d}} \left(k_{\hat{\mu}}(x) + \frac{N_c}{2} |\ell_{\hat{\mu}}(x)| \right) = N_c + q_x$$

Backup: Crosschecks at $\mu = 0$, T = 0

• Sampling average plaquette at finite β :

$$\langle P \rangle = rac{2}{Vd(d-1)} rac{\partial}{\partial eta} \log(Z) = rac{1}{eta} \left\langle n_P \right\rangle, \quad n_P = rac{2}{Vd(d-1)} \sum_P q_P$$

• saturation expected: $\langle n_p \rangle \le \frac{N_c}{2d(d-1)}$ (at most N_c plaquettes can join at a bond or site)

• numerical results show indeed saturation of $\langle n_p \rangle$, \Rightarrow $\langle P \rangle \rightarrow 0$ for $\beta \rightarrow \infty$

• reweighting from the SC-ensemble, $\langle P \rangle = Z_P/Z$, gives very precise results

Conclusions
Taylor Coefficient

Backup: FSS Scaling of Taylor Coefficient

Wolfgang Unger, University of Frankfurt

The phase diagram of SC-LQCD

Mainz, 1.08.2013 23 / 18

Backup: Results on the Slope at Zero and non-Zero Density

The slope gets smaller for increasing μ

