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Partons

Hadrons are composite objects with a non trivial internal
structure. We call the building blocks partons. To describe them
we can use GPDs, which are functions of the Bjorken xB and
the momentum transfer Q2.
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Three-point functions and form factors
Our theoretical tool to compute (moments of) GPDs are matrix
elements of operators of the type

OΓ = ΨΓΨ ,

which can be extracted on the lattice via three-point funtions:

X

In this talk we will restrict ourselves to form factors FF (Q2),
which are the first Mellin Moment of the GPD(xB, Q2):

FF (Q2) =
∫

dxB GPD(xB, Q2)
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Inserting a current in a proton

X
~q

~pi ~pf

baryon source baryon sink

To construct G(x, y) we have two possibilities:
1. fix all indices in the sink by fixing the polarization (Tαα) , ~pf
(
∑
~x e
−i~pf~x), and the insertion flavor. (Sequential Propagator)

2. use a stochastic time-slice to all propagator: statistical noise
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State of the art

Related work
The Regensburg group computed meson three-point
functions with All-to-all propagators Evans, et. al. arXiv:1008.3293

The ETM collaboration tried this for baryon three-point
functions and computed gA Alexandrou, et. al. arXiv:1302.2608

This talk
We have explored other quantities with this method
and have computed form factors
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All-to-all propagators

Random C2 ≡ Z2 × iZ2 source vectors ηiα,a,x = 1√
2(v + iw)

with v, w ∈ {±1} fulfill

1
N

N∑
n=1

ηni η
n†
j = δij +O( 1√

N
) (1)

Solve χi = M−1
ij η

j and recover M−1 by

1
N

N∑
n=1

χnβ,b,yη
n†
α,a,x = M−1

β,b,y;α,a,x

(
1 +O

( 1√
N

))
(2)
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T-symmetry partner averaging

Note: t→ Nt − t , γ4 → −γ4 is a symmetry and thus yields the
same expectation values, but we can measure the transformed
nucleon independently on each gauge configuration.

X
~q

~pi ~pf

baryon source baryon sink
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T-symmetry partner averaging

Note: t→ Nt − t , γ4 → −γ4 is a symmetry and thus yields the
same expectation values, but we can measure the transformed
nucleon independently on each gauge configuration.

X
~q

source time slice I1
2
(1 + γ4)
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T-symmetry partner averaging

Note: t→ Nt − t , γ4 → −γ4 is a symmetry and thus yields the
same expectation values, but we can measure the transformed
nucleon independently on each gauge configuration.

X
~q~q

source time slice Itime slice II 1
2
(1− γ4)

X

1
2
(1 + γ4)
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Extracting form factors
We extract a matrix element via a ratio of the three-point
function and two-point functions:

Rt,τ ;~pi,~pf ;O,Γ =
C3pt

Γ (t, τ ; ~pf , ~pi, O)
C2pt

Γu
(t; ~pf )

×
[
C2pt

Γu
(τ ; ~pf )C2pt

Γu
(t; ~pf )C2pt

Γu
(t− τ ; ~pi)

C2pt
Γu

(τ ; ~pi)C2pt
Γu

(t; ~pi)C2pt
Γu

(t− τ ; ~pf )

] 1
2

.

Lorentz invariance permits to decompose the matrix elements
into several structures:

〈P ′ | Ψqγ
µ
MΨq | P 〉 = 〈〈γµM 〉〉F1(Q2) + i

2mN
〈〈σµνM 〉〉∆

M
ν F2(Q2) ,

where

〈〈O〉〉 = U(P ′)OU(P ) .

This defines an overdetermined system of equations which we
can solve using SVD. More combinations of
momenta/polarizations for a given virtuality yield more
equations and thus smaller errors.
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Simulation details

Configurations of the QCDSF collaboration
Wilson Clover action
Lattice Volume 323 × 64
β = 5.5, a = 0.074fm, set with w0 scale

Borsanyi, et. al. arXiv:1203.4469

Nf = 2 + 1, κu,d = κs = 0.1209, mπ = 440 MeV
mπL = 5.28
We use 400 steps of Wuppertal quark smearing

Gusken, Nucl.Phys.Proc.Suppl. 17 (1990)

on APE smeared gauge links
Albanese, M. Phys. Lett. B192 (1987)
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Smearing
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Set up of the comparison

Unrenorm. data, insertion flavor u, no disconnected contrb.
measured on a set of 103 cfgs using the same source
position for the point-to-all propagator.
Counting inversions: 12 (point-to-all), sequential: 12 per
flavor and polarization ( 12x4 ), stochastic: 60
To guide the eye: results for higher statistics (827 cfgs.)
employing the stochastic method.
We went up to ~q 2 |max= 6
The sequential data was measured with ~pf = ~0,
unpolarized or pol. in z.
For the stochastic 3pt-fns we use ~p 2

f |max= ~p 2
i |max= 2 and

all polarizations
Slightly different virtualities as we can split the transfered
momentum between source and sink.
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Electromagnetic form factor F1
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Electromagnetic form factor F2
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Axial form factor GA
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Pseudoscalar form factor GP
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Scalar form factor GS
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Conclusion

Stochastic three-point functions
Stochastic baryon three-point functions work
cost efficiency is reached when many quantities are looked
at
Having many sink momenta one can access high Q2

without using two-point functions with high momenta.
Flexibility can be used to compute different tsink, sink
smearings, baryons at little additional cost

Thank you for the attention!
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