

JULY 29 - AUGUST 03 2013 MAINZ, GERMANY

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

A high-statistics study of nucleon electromagnetic form factors

Thomas Rae

University of Mainz

arXiv hep-lat: 1205.0180, 1211.1282, 1208.0189

Collaborators: Stefano Capitani, Andreas Jüttner, Michele Della Morte, Georg von Hippel, Benjamin Jäger, Bastian Knippschild, Harvey Meyer, Hartmut Wittig

1 August, 2013

Contents

- Motivation
- Form factors
- Lattice formulation
- Extraction methods systematics
- Results
 - Vector form factors arXiv hep-lat: 1211.1282
- Outlook

Motivation

- Baryonic form factors
 - provide information on hadron structure
 - distribution of electric charge and magnetisation
 - charge radii
 - accurate experimental data available
 - relatively simple to compute on the lattice
 - * large systematic uncertainties remain and need to be controlled

Form factors

Rosenbluth formula describes electron-nucleon scattering

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right) \propto \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2\left(\frac{\theta}{2}\right)\right], \quad \tau = \frac{Q^2}{4M^2}$$

Form factors measured experimentally

* e.g at MAMI here in Mainz

Form factors

* The matrix element of a nucleon interacting with an electromagnetic current is decomposed by the Dirac and Pauli form factors - F_1 and F_2 respectively

$$\langle N(p',s')|V_{\mu}|N(p,s)\rangle = \overline{u}(p',s') \left[\gamma_{\mu}F_1(Q^2) + i\frac{\sigma_{\mu\nu}q_{\nu}}{2m_N}F_2(Q^2)\right]u(p,s)$$

* These are related to the Sachs form factors G_E and G_M that are measured in scattering experiments

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2}F_2(Q^2), \quad G_M(Q^2) = F_1(Q^2) + F_2(Q^2).$$

Lattice formulation

Build a ratio

$$R_{\gamma_{\mu}}(\vec{q},t,t_s) = \frac{C_{3,\gamma_{\mu}}(\vec{q},t,t_s)}{C_2(\vec{q},t,t_s)} \sqrt{\frac{C_2(\vec{q},t_s-t)C_2(\vec{0},t)C_2(\vec{0},t_s)}{C_2(0,t_s-t)C_2(\vec{q},t)C_2(\vec{q},t_s)}}$$

from which the form factors may be extracted

$$\operatorname{Re}[R_{\gamma_0}] = \sqrt{\frac{M+E}{2E}} G_E(Q^2) \quad \operatorname{Re}[R_{\gamma_i}]_{i=1,2} = \epsilon_{ij} p_j \sqrt{\frac{1}{2E(M+E)}} G_M(Q^2)$$

Lattice setup

- * Gauge field configurations generated as part of the CLS project
 - * $N_f = 2$ non-perturbatively O(a) improved Wilson fermions
- Perform a systematic study of baryonic form factors with controlled systematics
 - lattice artefacts
 - finite volume effects
 - excited state contamination

Run	β	<i>a</i> [fm]	$L^3 \times T$	m_{π} [MeV]	<i>L</i> [fm]	$m_{\pi}L$ [MeV]	N _{meas}
A3	5.2	0.079	32 ³ ×64	473	2.5	6.0	2128
A4				363	2.5	4.7	3200
A5				312	2.5	4.0	4000
B6			48 ³ ×96	262	3.8	5.0	2544
E5	5.3	0.063	32 ³ ×64	451	2.0	4.7	4000
F6			48 ³ ×96	324	3.0	5.0	3600
F7				277	3.0	4.2	3000
G8			64 ³ ×128	195	4.0	4.0	4176
N5	5.5	0.050	48 ³ ×96	430	2.4	5.2	1908
N6				340	2.4	4.0	3784
07			64 ³ ×128	270	3.2	4.4	1960

Run	β	<i>a</i> [fm]	$L^3 \times T$	m_{π} [MeV]	<i>L</i> [fm]	$m_{\pi}L$ [MeV]	N _{meas}
A3	5.2	0.079	32 ³ ×64	473	2.5	6.0	2128
A4				363	2.5	4.7	3200
A5				312	2.5	4.0	4000
B6			48 ³ ×96	262	3.8	5.0	2544
E5	5.3	0.063	32 ³ ×64	451	2.0	4.7	4000
F6			48 ³ ×96	324	3.0	5.0	3600
F7				277	3.0	4.2	3000
G8			64 ³ ×128	195	4.0	4.0	4176
N5	5.5	0.050	48 ³ ×96	430	2.4	5.2	1908
N6				340	2.4	4.0	3784
07			64 ³ ×128	270	3.2	4.4	1960

- * Form factors should be independent of time and source position
 - * Simple plateau fits show a trend to step as source-sink separation is changed
- Exponentially decaying excited states from source and sink
 - Look at several src/snk combinations

* Unclear as to whether $t_s=1.1$ fm is sufficient to rule out bias

* Compute the sum $S(t_s)$ for several t_s

$$S(t_s) = \sum_{t=0}^{t_s} R(\vec{q}, t, t_s) \to c(\Delta, \Delta') + t_s \left(G + \mathcal{O} \left(e^{-\Delta t_s} \right) + \mathcal{O} \left(e^{-\Delta' t_s} \right) \right)$$

Vector form factors

- Model the Q² dependence
 - dipole ansatz:

$$G_{E,M}(Q^2) = \frac{G_{E,M}(0)}{\left(1 + \frac{Q^2}{M_{E,M}^2}\right)}$$

- used to determine the radius
- * and to determine the magnetic moment, $\mu = G_M(0)$

$$\mu = \lim_{Q^2 \to 0} \frac{G_M(Q^2)}{G_E(Q^2)}$$

* N6: measured 6 different source-sink separations

* shift of summation method using only 4 largest t_s

Summary

- * We observe a systematic variation in the form factors for the plateau method for different source-sink separations t_s
 - clearer for large statistics
- Summed insertions help control excited state contamination
 - remove the need to fit plateaus
- * Important to consider range of t_s
 - * small t_s have smallest statistical errors but most effected by excited state contamination

Outlook

- * N6 ensemble hints at bias for plateau method even for $t_s=1.1$ fm
 - check for the most chiral ensembles
- Chiral behaviour of the form factors and derived quantities
- * look at axial form factors $G_P(Q^2)$ and $G_A(Q^2)$
- Introduce dynamical strange quark
- Simulations at the physical pion mass

Sachs to Dirac form factors

Relate Sachs form factors to the Dirac and Pauli form factors

$$\frac{1}{M_E^2} = \frac{r_1^2}{12} + \frac{\kappa}{8m_N^2} \qquad \qquad \frac{1}{M_M^2} = \frac{r_1^2 + \kappa r_2^2}{12(1+\kappa)}$$

where

$$\kappa = G_M(0) - 1 = \mu - 1 \qquad G_{E,M}(Q^2) = \frac{G_{E,M}(0)}{\left(1 + \frac{Q^2}{M_{E,M}^2}\right)}$$

 $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2}F_2(Q^2), \qquad G_M(Q^2) = F_1(Q^2 + F_2(Q^2)).$