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I. Motivation
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Can we understand this scaling
behavior?
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I. Discretization Effects of the Wilson Dirac
Operator

Chiral Lagrangian

Random Matrix Theory

Constraints on Low Energy Constants

First Order Scenario
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Chiral Lagrangian in the ǫ Domain

Chiral Lagrangian for Wilson Fermions

− L =
1

2
mV ΣTr(U + U †) − 1

2
zV ΣTr(U − U †)

−a2V W6[Tr(U + U †)]2 − a2V W7[Tr(U − U †)]2 − a2V W8Tr(U2 + U−2).

Sharpe-Singleton-1998, Rupak-Shoresh-2002, Bär-Rupak-Shoresh-2004,

Damgaard-Splittorff-JV- 2010

� Partition function for fixed index

Zν =

∫

U∈U(Nf )

dUdetνUe−
R

d4xL.

� For twisted mass fermions the mass term is replaced by

i

2
µV ΣTrτ3(U − U †).
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Random Matrix Theory for the Wilson Dirac
Operator

Since the chiral Lagrangian is determined uniquely by symmetries, in
the microscopic domain it also can be obtained from a random matrix
theory with the same symmetries. In the sector of index ν the random
matrix partition function is given by

Zν
Nf

=

∫

dAdBdW detNf (DW + m + zγ5) P (DW ),

with

DW =





aA C + aD

−C† + aD† aB



 and A† = A, B† = B.

A is a square matrix of size n × n , and B is a square matrix of size
(n + ν) × (n + ν) . The matrices C and D are complex n × (n + ν)

matrices. Damgaard-Splittorff-JV-2010
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Eigenvalue Fluctuations and Low Energy
Constants

� Since the QCD partition function is the average of a determinant,
eigenvalue fluctuations determine the low-energy constants.

� Which spectral fluctuations are responsible for W6 and W7 and
W8 ?

� We will find that the interpretation of the low energy constants in
terms of eigenvalue fluctuations will impose constraints on the
value of the constants.
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Distribution of “Topological” Eigenvalues

For a = 0 the eigenvalue density of D5 can be decomposed as

ρν
5(λ) = νδ(λ − m) + ρλ>m(λ).

For a 6= 0 the width of the peak at λ = m becomes finite.

� For ν = 1 and small a the result is
given by (see red curve in figure)

ρν=1
5,topo(x) =

e
−

V Σ2(x−m)2

16a2(W8−W6−W7)

4a
√

πV (W8 − W6 − W7)
.

Akemann-Damgaard-Splittorff-JV-2010,Kieburg-

Zafeiropoulos-JV-2013

� W8 − W6 − W7 > 0 . This also fol-
lows from the positivity of the two-
flavor partition function at fixed ν .
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Random Mass and Trace Squared Terms

For W6 < 0 we have

e−a2V W6Tr2(U+U−1) ∼
∫

dye−y2/(16V |W6|a
2)− 1

2 yTr(U+U−1).

For W7 < 0 we have

e−a2V W7Tr2(U+U−1) ∼
∫

dye−y2/(16V |W7|a
2)− 1

2 yTr(U−U−1).

Akemann-Damgaard-Spittorff-JV-2010

The trace square terms are generated by a random mass or the real
part of the eigenvalues of DW (for W6 ) or a chiral random mass or
the eigenvalues of D5 ≡ γ5DW (for W7 ).

Kieburg-Spittorff-JV-2012
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Collective Spectral Fluctuations of DW
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Collective fluctuations of the
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nonzero negative value of W7 .

Kieburg-Splittorff-JV-2012
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Caveats

� In lattice simulations one does not expect global collective
fluctuations. At most I would expect collective fluctuations on the
microscopic scale.

� Are there other eigenvalue fluctuations that can give rise to a
nonzero W6 and W7 ?
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Signs of Low-Energy Constants

� W8 > 0 independent of the value of W6 and W7 .
Akemann-Damgaard-Splittorf-JV-2010,Hansen-Sharpe-2011

� Positivity of the QCD partition function requires that
W8 − W6 − W7 > 0 .

� Interpretation in terms of eigenvalue fluctuations requires that
W6 < 0 , W7 < 0 .

� Twisted mass Wilson fermions lattice simulations find mPS
0 < mPS

±

m
PS

0

2

− m
PS

±

2

=
16a2(W8 + 2W6)

F 2
π

.

Münster-2004, Sharpe-Wu-2004

W ′
6 W ′

8

Iwasaki 0.0049(38) –0.0119(17)

tlSym 0.0082(34) –0.0138(22)
Herdoiza-etal-2013

Extrapolation to the chiral limit.
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First Order Scenario
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Effective potential for the order parameter. In the first order scenario
(left) there is an effective potential potential between the two minima
while in the usual case the effective potential is only slightly tilted by
the quark mass.

In terms of the chiral Lagrangian a first order scenario takes place if
2W6 + W8 < 0 when there is a potential barrier between the minima.

Sharpe-Singleton-2004
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First Order Scenario and Dirac Spectra

� Because the Wilson Dirac operator in neither Hermitian nor
anti-Hermitian its eigenvalues can move in the complex plane.

� Because of the fermion determinant they will be repelled from the
quark mass.

� The finite jump of the Dirac spectrum results in a first order phase
transition.

m 

Minimum A Minimum B

m

The fuzzy string of eigenvalues is repelled from the mass, m , which
results in a first order phase transition.
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Predictions

� Pion mass Sharpe-Singleton-2004, Münster-2004

m2
π =

2|m|Σ − 16(W8 + 2W6)a
2

F 2
π

.

When W8 + 2W6 < 0 we have
a minimum pion mass. This
has been observed in lattice
simulations with twisted mass
fermions. Jansen-etal-2005

high
low

amPCAC
χ

(amPS)2
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The minimum pion mass is O(a) .

� The first order scenario has only been observed for dynamical
Wilson quarks, whereas the Aoki phase has been found both in the
quenched case and in the case with dynamical Wilson quarks.
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III. Discretization Effects for the Overlap Dirac
Operator

Overlap Dirac Operator at µ = 0

Overlap Dirac Operator at µ 6= 0
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Overlap Dirac Operator at a = 0

The overlap Dirac operator

Dov = 1 + γ5Usign(D5)U
−1, D5 = DW + mγ5.

Narayanan-Neuberger-1994,1995, Neuberger-1998, Edwards-Heller-Narayanan-1999

� Looks drastic to replace the eigenvalues by their sign, but at zero
lattice spacing this is actually exact.

� The eigenvectors contain the information on the eigenvalues.

D5 =





u 0

0 v









m λk

λk −m









u−1 0

0 v−1



 .

� Complete diagonalization by an additional rotation with
tan 2φk = λk/m .
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Overlap Dirac Operator at a = 0

� The projected eigenvalues are given by a smooth function of
λk/m .

� At nonzero lattice spacing overlap eigenvalues are expected to
have correlations that differ by O(a) or O(a2) terms from the
continuum limit.

� What happens to eigenvalue correlation of when the Wilson Dirac
operator is in the Aoki phase?
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Large Mass RMT Overlap Dirac Operator at
a 6= 0
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The spectral density of the projected overlap Dirac operator for a = 0.3 ,

m = 100 and index ν = 0 and ν = 1 . The black curve shows the analytical

result and the red and blue curve the result from the computed

eigenvalues.The grey curve is the mean field result for the spectral density.
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Global Spectral Density of the Overlap Dirac
Operator at a 6= 0
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Global behavior of the spectral density of the projected overlap Dirac operator

for m = 0.2 and a = 0.05, a = 0.15, a = 0.24, a = 0.35, a = 0.45, a = 0.55

(from top to bottom). The critical value for the transition to the Aoki phase is

a = 0.35 (green curve). The curves have been rescaled to have the same

small x behavior, separately for the normal phase and the Aoki phase.
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Microscopic Spectral Density Overlap Dirac
Operator at a 6= 0
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The spectral density of the projected overlap Dirac spectra for m = 0.2 and

a = 0.05, a = 0.15, a = 0.24, a = 0.35, a = 0.45, a = 0.55 (from top to

bottom). The critical value for the transition to the Aoki phase is a = 0.35

(green curve). The curves have been rescaled to have the same small x

behavior, separately for the normal phase and the Aoki phase.
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Unfolded Spectral Density of the Overlap Dirac
Operator at a 6= 0
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Comparison of the spectral density of the overlap Dirac operator for a = 0.15

and m = 0.2 and the analytical chiral random matrix theory result.The

unfolded eigenvalues are shown right.
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Overlap Dirac Operator at Nonzero µ

Dirac operator

DW (µ, a) =





m + aA W + µ

−W † + µ m + aB



 .

Bloch-Wettig Overlap Dirac operator Bloch-Wettig-2006

Dov(µ, a) = 1 + γ5V sign(γ5DW (a, mu)V −1.

� Sign is determined by the imaginary part of the eigenvalues

� V is not unitary.
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Large Mass Limit of Overlap Dirac Operator

For a = 0 , the Dirac operator γ5DW can be written in the form

γ5DW =





U1 0

0 U2









m X

Y −m









U−1
1 0

0 U−1
2





with X and Y triangular matrices, and U and V unitary. We
diagonalize the matrix inbetween





m X

Y −m



 = V −1





√

m2 + xy 0

0 −
√

m2 + xy



V.

For large m

V =





1 −X/2m

Y/2m 1



 .
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Large Mass Limit of Overlap Dirac Operator
Nonzero µ and a

Overlap Dirac operator (up to unitary transformation)

Dov = 1 − γ5V
−1





1 0

0 −1



V =





0 −X/m

Y/m 0



 ,

Eigenvalues of the overlap Dirac operator

λk = ±i

√
xkyk

m
,

which differ by a factor 1/m from the original Dirac operator.

At finite a we again expect O(a) or O(a2) corrections.
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Global Spectral Density of the Overlap Dirac
Operator at Nonzero µ and a
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Spectral density
∫

dxρ(x, y) as a function of y of the overlap Dirac
operator for µ = 0.1 (left) and µ = 0.3 (right) and lattice spacing equal
to a = 0 (red), a = 0.2 (blue), a = 0.5 (grey) and a = 1 (magenta),
and m = 1 .

� Contrary to the lattice spacing, the chemical potential does not
have a large effect on the ultraviolet part of the Dirac spectrum.
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Infrared Part of the Dirac Spectrum
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Spectral density
∫

dxρ(x, y) as a function of y of the overlap Dirac
operator for µ = 0.2 (left) and µ = 0.5 (right) and lattice spacing equal
to a = 0 (red), a = 0.2 (blue), a = 0.5 (grey) and a = 1 (magenta).

� Eigenvalue fluctuations do not depend on the lattice spacing (after
rescaling) if the quark mass is outside of the Aoki domain.

� The scale factors do not depend on µ , and the deformed Dirac
spectrum at nonzero a only gives rise to µ -independent overall
factor.
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Microscopic Spectral Density of Overlap Dirac
Operator at µ 6= 0
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Microscopic spectral density for a = 0.2 (red) and a = 0.5 (blue)
compared to the analytical result for a = 0 for µ = 0.1 (left) and
µ = 0.3 (right).
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IV. Conclusions

� We have seen that the interpretation of low-energy constants of
Wilson Chiral perturbation theory in terms of eigenvalue
fluctuations imposes constraints on these constants.
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Wilson Chiral perturbation theory in terms of eigenvalue
fluctuations imposes constraints on these constants.

� The first order scenario has been understood in terms of collective
eigenvalue fluctuations of DW .
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IV. Conclusions

� We have seen that the interpretation of low-energy constants of
Wilson Chiral perturbation theory in terms of eigenvalue
fluctuations imposes constraints on these constants.

� The first order scenario has been understood in terms of collective
eigenvalue fluctuations of DW .

� The overlap operator is very robust against discretization effects
due to the Wilson term as long as the quark mass is outside the
Aoki phase. This is also the case for the overlap Dirac operator
and nonzero chemical potential.
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