# Euclidean 4D quantum gravity with a non-trivial measure term

Andrzej Görlich

in collaboration with Jan Ambjørn, Lisa Glaser and Jerzy Jurkiewicz

Niels Bohr Institute, University of Copenhagen



Mainz, August 1st, 2013

## Introduction

- O The measure term
- Results phase diagram
- Conclusions

Э

# Euclidean Dynamical Triangulations in four dimensions

Dynamical Triangulations (DT) is a background independent approach to quantum gravity.

It provides a lattice regularization of the formal gravitational path integral via a sum over simplicial manifolds

$$Z = \int \mathrm{D}[g] e^{-S^{\mathcal{E}}[g]} \quad o \quad \sum_{\mathcal{T}} \frac{1}{C(\mathcal{T})} e^{-S^{\mathcal{R}}[\mathcal{T}]}.$$

The Einstein-Hilbert action, has a natural realization on simplicial



# Euclidean Dynamical Triangulations in four dimensions

Dynamical Triangulations (DT) is a background independent approach to quantum gravity.

It provides a lattice regularization of the formal gravitational path integral via a sum over simplicial manifolds

$$Z = \int \mathrm{D}[g] e^{-S^{\mathcal{E}}[g]} \quad o \quad \sum_{\mathcal{T}} \frac{1}{C(\mathcal{T})} e^{-S^{\mathcal{R}}[\mathcal{T}]}.$$

The Einstein-Hilbert action, has a natural realization on simplicial



# Euclidean Dynamical Triangulations in four dimensions

Dynamical Triangulations (DT) is a background independent approach to quantum gravity.

It provides a lattice regularization of the formal gravitational path integral via a sum over simplicial manifolds

$$Z = \int \mathrm{D}[g] e^{-S^{\mathcal{E}}[g]} \quad o \quad \sum_{\mathcal{T}} \frac{1}{C(\mathcal{T})} e^{-S^{\mathcal{R}}[\mathcal{T}]}.$$

The Einstein-Hilbert action, has a natural realization on simplicial manifolds called Regge action,

$$S^{E}[g] = -\frac{1}{G} \int \mathrm{d}t \int \mathrm{d}^{D}x \sqrt{g}(R-2\Lambda) \quad 
ightarrow \quad S^{R}[\mathcal{T}] = -\kappa_{2}N_{2} + \kappa_{4}N_{4}.$$

- $N_2$ ,  $N_4$  number of triangles, four-simplices
- κ<sub>2</sub>, κ<sub>4</sub> bare coupling constants related to the Newton's constant G and the cosmological constant Λ

The pure model has two coupling constants ( $\kappa_4 \approx \kappa_4^{crit}$ ) and there exist only two phases separated by first order transition.

### No unique choice of the measure D[g]

Pseudo-canonical ensemble of combinatorial triangulations  $(S^4)$ :

$$Z(\kappa_2,\kappa_4,\beta) = \sum_{\mathcal{T}} \frac{1}{C(\mathcal{T})} \cdot \prod_{t=1}^{N_2} o_t^{\beta} \cdot e^{-\left[-\kappa_2 N_2 + \kappa_4 N_4 + \varepsilon(N_4 - \bar{N}_4)^2\right]}$$

where  $o_t$  is the order of triangle t.

- $\bullet$  Placing gauge field on triangulation  $\rightarrow$  dual lattice.
- The additional coupling constant β may introduce new phase(s) and higher order transition.

Ambjørn, Bilke, Brugmann, Burda, Frohlich, Jurkiewicz, Krzywicki, Marinari, Petersson, Tabaczek, Thorleifsson

イロト イポト イラト イラト

# The phase diagram



For  $\beta = 0$  the **branched polymer** phase is sharply separated from the **crumpled phase** by a jump of  $\langle r \rangle$  and a peak of  $\chi(N_0)$ . For  $\beta < 0$  we observe the **crinkled region**.

# The phase diagram



- Need to study various total volumes
- Path consisting of segments I,II, III: crumpled phase → crinkled region → branched polymers

## The phases

#### The crumpled phase

- Collapsed geometry. Small extension  $\langle r \rangle$ .  $d_h \approx \infty$ ,  $d_s \approx \infty$ .
- Two singular vertices  $o_v \propto N_4$ , sub-singular link  $o_l \propto N_4^{2/3}$ .
- No baby universes.

#### The branched polymer phase

- Elongated geometry,  $\langle r \rangle \propto N_4^{1/2}$ .  $d_h=2, \ d_s=4/3$
- Dominated by minimal necks separating baby universes
- Tree-like structure. Large baby universes.

#### The crinkled region

- Properties interpolate between crumpled and branched polymer
- Slow grow of extension  $\langle r \rangle$  with  $N_4$ .  $d_h \approx \infty$ ,  $d_s \approx \infty$ .
- Triangles of high order,  $\operatorname{Max} o_t \propto N_4^{1/6}$ . Not present in other phases
- Many minimal necks, but no large baby universes.
- Loops in minimal neck graph structure related to triangles of high order.

A **minimal neck** is a set of *five* tetrahedra forming a 4-simplex not present in the triangulation. Minimal necks equip triangulations with a graph structure. A **baby universe** is separated by a *miniml neck*.



## Crumpled

## Branched polymers

Crinkled







## The path - $N_2$ observable

- $N_2$  is conjugate to  $\kappa_2$ .
- No jump of  $\langle N_2 \rangle$ , but different scaling with  $N_4$ .
- Peak of susceptibility  $\chi(N_2)$  in segment I decreases with  $N_4$ .



## The path - $\log o_t$ observable

- $\log o_t$  is conjugate to  $\beta$ .  $\langle \log o_t \rangle$  increases when  $\beta$  increases.
- Peak of  $\chi(\log o_t)$  in segment I decreases with  $N_4$ .
- There is a peak of susceptibility at BP-crinkled transition.



# The path - $\langle r \rangle$ observable

- In BP phase  $\langle r \rangle$  is large and scales as  $N_4^{1/2}$ .
- Jump of  $\langle r \rangle$  at the boundary of BP phase.
- No sign of any transition between the crumpled phase and a possible crinkled phase.



## Hausdorff dimension

V(r) - average number of simplices at a geodesic distance r. For Hausdorff dimension  $d_h$  we expect scaling,

$$x = N_4^{-1/d_h} \cdot r, \quad v(x) = N_4^{-1+1/d_h} \cdot V(r).$$

Crumpled

## Branched polymers

#### Crinkled



Andrzej Görlich

**Euclidean Dynamical Triangulations** 

## Hausdorff dimension

V(r) - average number of simplices at a geodesic distance r. For Hausdorff dimension  $d_h$  we expect scaling,

$$x = N_4^{-1/d_h} \cdot r, \quad v(x) = N_4^{-1+1/d_h} \cdot V(r).$$

Crumpled

## Branched polymers

#### Crinkled



## Spectral dimension

- The spectral dimension *d<sub>s</sub>* describes the effective dimension seen by a diffusing particle.
- It may depend on diffusion time  $\sigma$ .
- Similar scale dependence of d<sub>s</sub>(σ) in crinkled region and CDT de Sitter phase, but here it grows with N<sub>4</sub>.

Crumpled

**Branched polymers** 

Crinkled



Andrzej Görlich

**Euclidean Dynamical Triangulations** 

# Conclusions

- Monte Carlo simulations of four-dimensional Euclidean Dynamical Triangulations with a measure term using combinatorial triangulations suggest that the transformation from crumpled to crinkled triangulations is gradual.
- There is no signal, growing with the total volume, of a phase transition between the crumpled phase and the crinkled phase.
- Following the path from the crumpled phase to the crinkled region, the singular structure dissolves gradually and breaks into smaller pieces.
- Configurations in the crinkled region look less "crumpled" but it seems to be a finite size effect.
- Branch polymer phase is visibly separated from other phases.

## Thank you for your attention!

・ 同・ ・ ヨ・