The spectrum of supersymmetric Yang Mills theory – new results and recent measurements

G. Bergner, I. Montvay, G. Münster, U. D. Özugurel, S. Piemonte, D. Sandbrink

WWU Münster, Uni Frankfurt, DESY Hamburg

Mainz, August 1, 2013

$\mathcal{N}=1$ SUSY Yang-Mills Theory

Lagrangean

$$\mathcal{L} = \int d^2\theta \operatorname{Tr}(W^A W_A) + h. c.$$

= $\frac{1}{4} F_{\mu\nu}^{\ a} F_{\mu\nu}^{\ a} + \frac{1}{2} \overline{\lambda}^a \gamma_\mu (\mathcal{D}_\mu \lambda)^a + \frac{1}{2} D^a D^a$

Vector supermultiplet:

- Gauge field $A^a_{\mu}(x)$, $a = 1, ..., N^2_c 1$, "Gluon" Gauge group SU(N_c)
- Majorana-spinor field $\lambda^{a}(x)$, $\overline{\lambda} = \lambda^{T} C$, "Gluino" adjoint representation: $\mathcal{D}_{\mu}\lambda^{a} = \partial_{\mu}\lambda^{a} + g f_{abc}A^{b}_{\mu}\lambda^{c}$
- (auxiliary field $D^a(x)$)

SUSY: (on-shell) $\delta A^{a}_{\mu} = -2i \overline{\lambda}^{a} \gamma_{\mu} \varepsilon$, $\delta \lambda^{a} = -\sigma_{\mu\nu} F^{a}_{\mu\nu} \varepsilon$

- Simplest model with SUSY and local gauge invariance
- Part of the supersymmetrically extended standard model

 $\mathcal{N}=1$

Similar to QCD

Differences: λ : 1.) Majorana, " $N_f = \frac{1}{2}$ " 2.) adjoint representation of SU(N_c)

Gluino mass term

 $m_{\widetilde{g}}~\overline{\lambda}^a\lambda^a$ breaks SUSY softly.

Non-perturbative Problems

- Spontaneous breaking of chiral symmetry $Z_{2N_c} \rightarrow Z_2$ \uparrow Gluino condensate $\langle \lambda \lambda \rangle \neq 0$
- Spectrum of bound states
 → Supermultiplets
- Confinement of static quarks.
- Spontaneous breaking of SUSY?
- SUSY restauration on the lattice
- Check predictions from effective Lagrangeans (Veneziano, Yankielowicz, ...)

Spontaneous breaking of chiral symmetry

 $\begin{array}{rcl} \text{Spontaneous breaking} & Z_{2N_c} & \to & Z_2 \\ & \text{by Gluino condensate} & <\lambda\lambda > \neq 0 \\ & \leftrightarrow & \text{first order phase transition at } m_{\tilde{g}} = 0 \end{array}$

 $N_c = 2: \langle \lambda \lambda \rangle = \pm C \Lambda^3$

Spectrum of bound states

Expect colour neutral bound states of gluons and gluinos \rightarrow Supermultiplets

Predictions from effective Lagrangeans: chiral supermultiplet (Veneziano, Yankielowicz)

- 0 $^-$ gluinoball a- $\eta'~\sim~\overline{\lambda}\gamma_5\lambda$
- 0⁺ gluinoball a– $f_0 \sim \overline{\lambda}\lambda$
- spin $\frac{1}{2}$ gluino-glueball $\sim \sigma_{\mu\nu} \operatorname{Tr} (F_{\mu\nu} \lambda)$

Generalization (Farrar, Gabadadze, Schwetz): additional chiral supermultiplet

- 0⁻ glueball
- 0⁺ glueball
- gluino-glueball

possible mixing

Lattice breaks SUSY. Restauration in the continuum limit? Curci, Veneziano: use Wilson action, search for continuum limit with SUSY

$$S = -\frac{\beta}{N_c} \sum_{p} \operatorname{Re} \operatorname{Tr} \ U_p$$

$$+ \frac{1}{2} \sum_{x} \left\{ \overline{\lambda}_x^a \lambda_x^a - \kappa \sum_{\mu=1}^{4} \left[\overline{\lambda}_{x+\hat{\mu}}^a V_{ab,x\mu} (1+\gamma_{\mu}) \lambda_x^b + \overline{\lambda}_x^a V_{ab,x\mu}^t (1-\gamma_{\mu}) \lambda_{x+\hat{\mu}}^b \right] \right\}$$

$$\beta = \frac{2N_c}{g^2}$$

$$\kappa = \frac{1}{2m_0 + 8} \quad \text{hopping parameter}, \quad m_0 = \text{bare gluino mass}$$

$$V_{ab,x\mu} = 2 \operatorname{Tr} \left(U_{x\mu}^{\dagger} T_a U_{x\mu} T_b \right)$$

SUSY on the Lattice

$$egin{aligned} S_f &= rac{1}{2} \overline{\lambda} Q \lambda = rac{1}{2} \lambda M \lambda \,, \qquad M \equiv C Q \ &\int [d \lambda] \, \mathrm{e}^{-S_f} = \mathrm{Pf}(M) = \pm \sqrt{\det Q} \end{aligned}$$

Effective gauge field action

$$S_{
m eff} = -rac{eta}{N_c}\sum_p {
m Re} \,{
m Tr} \, \, U_p - rac{1}{2} \log \det Q[U]$$

Include sign Pf(M) in the observables.

Gauge group SU(2) in most of our work.

- Two-Step Polynomial Hybrid Monte Carlo algorithm (TS-PHMC) Frezzotti, Jansen; Montvay, Scholz very efficient, $\tau < 10$ at smallest $m_{\tilde{g}}$
- Rational Hybrid Monte Carlo algorithm (RHMC)

Sign Problem monitoring of sign Pf(M)

- through spectral flow
- by calculation of real negative eigenvalues of Q with Arnoldi
- ightarrow negative Pfaffians occur in our simulations near κ_c , but rarely.

Phase transition for SU(2)

Expectation:

The dashed-dotted line $\kappa = \kappa_c(\beta)$ is a first order phase transition at zero gluino mass.

Phase transition point

 $am_{\tilde{g}}Z_S = \frac{1}{2}\left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)$

$$(am_{a-\pi})^2 \simeq A\left(rac{1}{\kappa} - rac{1}{\kappa_c}
ight)$$

Bound states

Glueballs: 0^+ , $0^- \cong$

Gluino-glueballs, Spin $\frac{1}{2}$ Majorana

$$\chi_{\alpha} \simeq \frac{1}{2} F_{\mu\nu}^{a} (\sigma_{\mu\nu})_{\alpha\beta} \lambda_{\beta}^{a}$$

Gluino-balls

 $\overline{\lambda}\gamma_5\lambda$: a- η' , 0⁻ $\overline{\lambda}\lambda$: a- f_0 , 0⁺

Correlators of mesons have disconnected pieces

Examples

Finite size effects

Masses of gluino-glue and the a - η' meson as a function of L $\beta = 1.75, \; \kappa = 0.1490$

Finite size effects are sufficiently small for L > 1.2 fm. (QCD units: $r_0 = 0.5$ fm)

Spectrum

Lattices $16^3 \cdot 32$, $24^3 \cdot 48$, $(32^3 \cdot 64)$, Stout links $\beta = 1.6$, $a \sim 0.088$ fm, $L \ge 2$ fm $\beta = 1.75$, $a \sim 0.058$ fm, L = 1.39 fm, (1.86 fm) $m_{a-\pi} \sim 570$ MeV (461 MeV) (QCD units: $r_0 = 0.5$ fm)

Previous results:

gap between gluino-glue and its supposed superpartners

Spectrum

Extrapolations to $m_{\tilde{g}} = 0$

β	а– η'	a– <i>f</i> 0	ĝg	glueball 0 ⁺⁺
1.6	670(63)	571(181)	1386(39)	721(165)
1.75	950(87)	1070(123)	1091(62)	1319(120)

Comparison of the bound state masses in units of MeV

Status:

- Finite size effects are sufficiently small for L > 1.2 fm
- Efficient algorithms: TS-PHMC, RHMC
- Consistency with SUSY Ward identities
- Quantitative results about the low-energy spectrum
- Better statistics
- Extrapolations towards vanishing gluino mass
- The previously seen considerable gap between the spin-1/2 gluino-glue bound state and its expected super-partners is not any longer seen.
- Results are consistent with the formation of degenerate supermultiplets

Summary

Goals:

- Scaling, extrapolation to continuum
- Refined methods for spectrum analysis

Work in progress:

- Same statistics and analysis at eta=1.9
- Clover improvement (see Stefano Piemonte's talk)
- Smaller gluino mass

Recent publications:

- G. Bergner, T. Berheide, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink, JHEP 1209 (2012) 108 [arXiv:1206.2341 [hep-lat]]
- G. Bergner, I. Montvay, G. Münster, U. D. Özugurel, D. Sandbrink, [arXiv:1304.2168 [hep-lat]]
- S. Musberg, G. Münster, S. Piemonte, JHEP **1305** (2013) 143 [arXiv:1304.5741 [hep-lat]]