CHARMED BOTTOM BARYON SPECTROSCOPY

Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

OUTLINE

Landscape of heavy baryon spectroscopy

• Details of our calculation

• Extrapolations

Results

- Significant experimental progress in recent years Many singly heavy baryon observations Ω_b, Ξ_{cc} CONTROVERSY
- Productive period for LQCD spectroscopy of heavy baryons

Group	$N_{ m f}$	$S_{ m H}$	$a_t^{-1} (\text{GeV})$	$L \ (fm)$
Bowler et al.	0	tree clover	2.9	1.63
Lewis et al.	0	D234	$1.8,\ 2.2,\ 2.6$	1.97
Mathur et al.	0	NRQCD	1.8, 2.2	2.64, 2.1
Flynn et al.	0	NP clover	2.6	1.82
Chiu et al.	0	ODWF	2.23	1.77
Na et al.	2 + 1	Fermilab	2.2,1.6,1.3	2.5
Liu et al.	2 + 1	m RHQ	1.6	2.5
Briceño et al.	2 + 1 + 1	m RHQ	1.6, 2.2, 3.4	2.7 - 4.1
Alexandrou et al.	2	Osterwalder-Seiler	3.5,2.8,2.2	1.8 - 2.74
Namekawa et al.	2 + 1	m RHQ	2.2	2.9

3

from H.W. Lin [1] (extended to present)

from H.W. Lin [1] (not current)

	Splitting(Stat)(Extrap)(Scale)	Experiment
$B_s - B_d$	71.2(2.2)(1.2)(4.2)	87.1(0.6)
$\Lambda_b - B_d$	340(11)(8.1)(24)	341.0(1.6)
$\Xi_b - B_d$	484.7(7.7)(6.2)(32)	513(3)
$\Sigma_b - B_d$	615(15)(12)(40)	554(3)
$\Xi_b' - B_d$	672(10)(9.1)(44)	—
$\Omega_b - B_d$	749.2(9.8)(9.0)(49)	786(7)/886(16)
$\Lambda_b - B_s$	261(10)(8.5)(19)	253.9(1.7)
$\Xi_b - \Lambda_b$	157.2(5.2)(3.4)(9.0)	172(3)
$\Sigma_b - \Lambda_b$	274(13)(13)(17)	213(3)
$\Xi_b' - \Lambda_b$	335(15)(10)(20)	—
$\Omega_b - \Lambda_b$	414(12)(9.5)(25)	445(7)/545(16)
$\Xi_b' - \Sigma_b$	62.6(2.6)(2.0)(3.9)	
$\Omega_b - \Xi_b'$	81.5(2.7)(3.4)(4.9)	_

• Test agreement between lattice/expt. and lattice/lattice

from PDG [2]

• Test agreement between lattice/expt. and lattice/lattice

from H.W. Lin [2] and Refs. therein

• Test agreement between lattice/models

GOAL OF OUR CALCULATION:

 Comprehensive calculation of the low lying heavy baryon spectrum Include all states with charmed and bottom quarks.

GOAL OF OUR CALCULATION:

- Comprehensive calculation of the low lying heavy baryon spectrum Include all states with charmed and bottom quarks.
- Include mixed charmed bottom baryons

DETAILS OF THE CALCULATION

Use ensembles generated by RBC/UKQCD collaboration [3] lwasaki gauge action a ~ 0.0849, 0.1119 fm L ~ 2.7fm 2+1 flavors of dynamical DVVF with L₅ = 16 Mass ranges: m^{vv}_π = (227 - 352) MeV, m^{ss}_π = (295 - 352) MeV m^{vv}_K = (523 - 586) MeV
Relativistic heavy quark action [4] for charmed quarks Non-perturbatively tune ν and m₀

Use tree level values for c_E and c_B

• NRQCD for bottom accurate through order v^4 One loop improved c_4 calculated by Tom Hammant [5]

INTERPOLATING OPERATORS AND FITTING METHODOLOGY: BARYON OPS

• Use baryon operators of the form:

$$O_5[q,q',q'']_{\alpha} = \epsilon_{abc} (C\gamma_5)_{\beta\gamma} q^a_{\beta} q'^b_{\gamma} (P_+q'')^c_{\alpha},$$

$$O_j[q,q',q'']_{\alpha} = \epsilon_{abc} (C\gamma_j)_{\beta\gamma} q^a_{\beta} q'^b_{\gamma} (P_+q'')^c_{\alpha},$$

 2×4 for {qqQ, qQQ}

 2×2 for {QQQ}

- Use different smearing to construct operator basis:
- Simultaneous matrix fits, optimized ranges:

CHIRAL / CONTINUUM EXTRAPOLATIONS

$$M_B = M_0(\mu) + \Delta_B(\mu) + M_1^{(B)}(\mu) + M_{3/2}^{(B)}(\mu) + \mathcal{O}\left(a^2\right)$$

• Tiburzi [6] for singly heavy (coupled fits, SU(2), extended to $\mathcal{O}(1/m_Q)$):

$\begin{bmatrix} M_{\Lambda} \\ M_{\Sigma} \\ M_{\Sigma^*} \end{bmatrix} = M_0 + \begin{bmatrix} 0 \\ \Delta_{\Sigma,\Lambda} \\ \Delta_{\Sigma^*,\Lambda} \end{bmatrix} + \frac{f^2}{8} \begin{bmatrix} \frac{\tilde{\lambda}_3}{2} \\ \tilde{\lambda}_1 \\ \tilde{\lambda}_1 \end{bmatrix} m_{\pi_{vv}}^2 + \frac{f^2}{4} \begin{bmatrix} \tilde{\lambda}_4 \\ \tilde{\lambda}_2 \\ \tilde{\lambda}_2 \end{bmatrix} m_{\pi_{ss}}^2 + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \end{bmatrix} + g_3^2 \begin{bmatrix} \tilde{M}_{g_3,\Lambda}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3,\Sigma^*}^{(3/2)} \\ \tilde{M}_{g_3$	
---	--

• Mathur et. al [7] for doubly heavy (coupled fits, SU(2)):

$$\begin{bmatrix} M_{\Xi} \\ M_{\Xi^*} \end{bmatrix} = M_0 + \begin{bmatrix} -(1/2) \\ (1/4) \end{bmatrix} \Delta_H - \frac{f^2 \tilde{\sigma}}{2} m_{\pi_{vv}}^2 - f^2 \tilde{\sigma}' m_{\pi_{ss}}^2 + g_1^2 \begin{bmatrix} \tilde{M}_{\Xi_{QQ}}^{(3/2)} \\ \tilde{M}_{\Xi_{QQ}}^{(3/2)} \end{bmatrix} .$$

Assume chiral dependence to be negligible for triply heavy:

$$M_{\Omega_{QQQ}^{(*)}} = M_0 + c_a a^2$$

11

FV corrections from Detmold et al. [8], g widths from Detmold et al. [9]

CHIRAL / CONTINUUM EXTRAPOLATIONS

CHIRAL / CONTINUUM EXTRAPOLATIONS

CHIRAL / CONTINUUM EXTRAPOLATIONS: RESULTS

Baryon	Lattice (GeV)	Expt. (GeV)	Baryon	Lattice (GeV)	Expt. (GeV)
Λ_c	2.137(74)	2.286	Λ_b	5.456(114)	5.619
Σ_c	2.444(81)	2.454	Σ_b	5.781(96)	5.811
Σ_c^*	2.518(82)	2.518	Σ_b^*	5.802(97)	5.832
Ξ_c	2.372(58)	2.467	Ξ_b	5.760(80)	5.791
Ξ_c'	2.526(62)	2.575	Ξ_b'	5.947(81)	_
Ξ_c^*	2.600(62)	2.645	Ξ_b^*	5.971(81)	_
Ω_c	2.615(67)	2.685	Ω_b	6.008(80)	6.071
Ω_c^*	2.690(67)	2.765	Ω_b^*	6.036(80)	_

CHIRAL / CONTINUUM EXTRAPOLATIONS: RESULTS

Baryon	Lattice (GeV)	Baryon	Lattice (GeV)	Baryon	Lattice (GeV)
Ξ_{cc}	3.558(39)	Ξ_{cb}	6.877(52)	Ξ_{bb}	10.185(53)
Ξ^*_{cc}	3.627(54)	Ξ_{cb}^*	6.915(62)	Ξ_{bb}^*	10.191(56)
Ω_{cc}	3.689(38)	Ω_{cb}	6.973(48)	Ω_{bb}	10.250(51)
Ω^*_{cc}	3.773(38)	Ω_{cb}^*	7.040(48)	Ω_{bb}^*	10.283(51)
Ω_{ccc}	4.794(9)	Ω_{ccb}	7.989(11)	Ω^*_{ccb}	8.012(12)
Ω_{cbb}	11.177(9)	Ω^*_{cbb}	11.206(11)	Ω_{bbb}	14.370(10)

CONSIDERATION OF UNCERTAINTIES

- All statistical uncertainties
- Systematics may enter through several sources:
 - Optimization routine for extracting masses
 - Absence of NNLO correction terms to chiral extrapolations

$$M = M_0 + \mathcal{O}\left(m_{\pi_{vv}}^4\right) + \mathcal{O}\left(m_{\pi_{vs}}^4\right) + \mathcal{O}\left(m_{\pi_{vv}}^2 m_{\pi_{vs}}^2\right)$$

Currently being explored... but how do our results compare?

RESULTS: CHARM COMPARISONS

17

RESULTS: BOTTOM COMPARISONS

RESULTS: MIXED COMPARISONS

FUTURE OUTLOOK

• Still need to nail down systematic uncertainties

 Possible repetition of calculation with larger operator basis and relativistic bottom quarks?

THANKYOU

References:

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)

[2] H.W. Lin, Chin. J. Phys. 49 (2011) 827 [arXiv:1106.1608 [hep-lat]]

[3] Y. Aoki et al., "Continuum Limit Physics from 2+1 Flavor Domain Wall QCD," Phys.Rev., vol. D83, p. 074508, 2011.

[4] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie, Phys. Rev. D55, 3933 (1997), hep-lat/9604004

[5] T. C. Hammant, A. G. Hart, G. M. von Hippel, R. R. Horgan and C. J. Monahan, Phys. Rev. Lett. 107, 112002 (2011) [arXiv:1105.5309 [hep-lat]]

[6]B. C. Tiburzi, "Baryon masses in partially quenched heavy hadron chiral perturbation theory," Phys. Rev., vol. D71, p. 034501, 2005.

[7]T. Mehen and B. C. Tiburzi, "Doubly heavy baryons and quark-diquark symmetry in quenched and partially quenched chiral perturbation theory," Phys.Rev., vol. D74, p. 054505, 2006.

[8] W. Detmold, C.-J. D. Lin, and S. Meinel, "Axial couplings in heavy hadron chiral perturbation theory at the next-toleading order," Phys.Rev., vol. D84, p. 094502, 2011.

[9] W. Detmold, C.-J. D. Lin, and S. Meinel, "Axial couplings and strong decay widths of heavy hadrons," Phys.Rev.Lett., vol. 108, p. 172003, 2012.