Exploring the Roper resonance in Lattice QCD

Waseem Kamleh *CSSM Lattice Collaboration* **Key Collaborators** Selim Mahbub, Dale Roberts, Derek Leinweber, Peter Moran and Tony Williams

University of Adelaide

Lattice 2013

N(1440) 1/2⁺

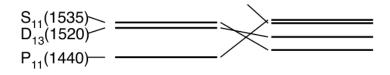
$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Breit-Wigner mass = 1420 to 1470 (≈ 1440) MeV Breit-Wigner full width = 200 to 450 (≈ 300) MeV $p_{\text{beam}} = 0.61 \text{ GeV}/c$ $4\pi \lambda^2 = 31.0 \text{ mb}$ Re(pole position) = 1350 to 1380 (≈ 1365) MeV -2Im(pole position) = 160 to 220 (≈ 190) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
Νπ	55-75 %	398
$N\eta$	(0.0±1.0) %	†
$N\pi\pi$	30-40 %	347
$\Delta \pi$	20-30 %	147
$arDelta(1232)\pi$, $\mathit{P} ext{-wave}$	15–30 %	147
$N \rho$	<8 %	†
N $ ho$, S=1/2, P-wave	(0.0±1.0) %	†
$N(\pi\pi)_{S-\text{wave}}^{I=0}$	10-20 %	-
$p\gamma$	0.035-0.048 %	414
$p\gamma$, helicity ${=}1/2$	0.035-0.048 %	414
$n\gamma$	0.02-0.04 %	413
$n\gamma$, helicity=1/2	0.02-0.04 %	413

- Quark model: N = 2 radial excitation of the nucleon.
- Much lower in mass than simple quark model predictions.

Roper Resonance



Roper Resonance

- Quark model: *N* = 2 radial excitation of the nucleon.
- Much lower in mass than simple quark model predictions.

- Experiment: Lighter than N = 1 radial excitation of the nucleon, the negative parity $S_{11}(1535)$.
- "Exotic" in nature.

- It has proven difficult to isolate this state on the lattice.
- Consider the nucleon interpolators,

$$\begin{split} \chi_1(x) &= \epsilon^{abc}(u^{Ta}(x) \, C\gamma_5 \, d^b(x)) \, u^c(x) \,, \\ \chi_2(x) &= \epsilon^{abc}(u^{Ta}(x) \, C \, d^b(x)) \, \gamma_5 \, u^c(x) \,. \end{split}$$

Historically thought Roper couples to χ₂.

- It has proven difficult to isolate this state on the lattice.
- Consider the nucleon interpolators,

$$\begin{split} \chi_1(x) &= \epsilon^{abc}(u^{Ta}(x) \, C\gamma_5 \, d^b(x)) \, u^c(x) \,, \\ \chi_2(x) &= \epsilon^{abc}(u^{Ta}(x) \, C \, d^b(x)) \, \gamma_5 \, u^c(x) \,. \end{split}$$

- Historically thought Roper couples to χ_2 .
 - We will see that this is wrong!

- It has proven difficult to isolate this state on the lattice.
- Consider the nucleon interpolators,

$$\begin{split} \chi_1(x) &= \epsilon^{abc}(u^{Ta}(x) \, C\gamma_5 \, d^b(x)) \, u^c(x) \,, \\ \chi_2(x) &= \epsilon^{abc}(u^{Ta}(x) \, C \, d^b(x)) \, \gamma_5 \, u^c(x) \,. \end{split}$$

- Historically thought Roper couples to χ₂.
 - We will see that this is wrong!
- Key to isolating this elusive state is an appropriate variational basis.
 - Phys.Lett. B707 (2012) 389-393, "Roper Resonance in 2+1 Flavor QCD"

Variational Method

• Construct an *n* × *n* correlation matrix,

$$\mathcal{G}_{ij}(t,ec{
ho}) = \sum_{ec{\chi}} e^{-iec{
ho}.ec{\chi}} \langle \Omega | \, \mathcal{T}\{\chi_i(x) ar{\chi}_j(0)\} | \Omega
angle.$$

Solve a generalised eigenproblem to find the linear combination of interpolating fields,

$$\bar{\phi}^{\alpha} = \sum_{i=1}^{N} u_i^{\alpha} \, \bar{\chi}_i, \qquad \qquad \phi^{\alpha} = \sum_{i=1}^{N} v_i^{\alpha} \, \chi_i$$

such that the correlation matrix is diagonalised,

$$v_i^{\alpha}G_{ij}(t)u_j^{\beta}=\delta^{lphaeta}z^{lpha}\bar{z}^{eta}e^{-m_{lpha}t}.$$

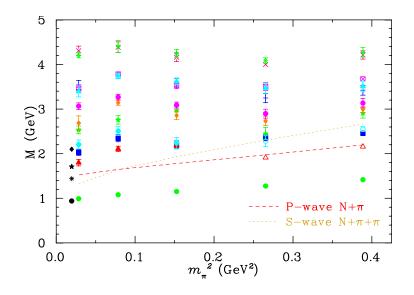
Eigenstate-Projected Correlators

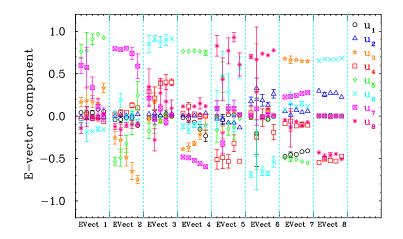
• The left and right vectors are used to define the eigenstate-projected correlators

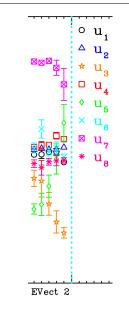
$$v_i^{lpha}G_{ij}^{\pm}(t)u_j^{lpha}\equiv G_{\pm}^{lpha}(t).$$

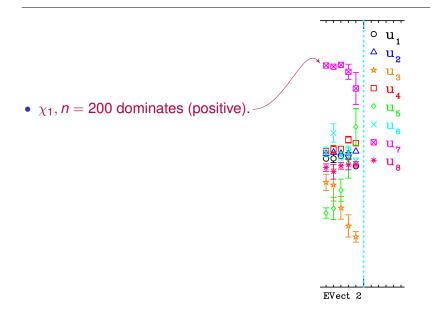
- χ_1 and χ_2 give us two operators.
 - Not able to access the Roper using these alone.
- Solution: Use different levels of gauge-invariant quark smearing to expand the operator basis.
- PACS-CS 2+1 flavour ensembles, lightest $m_{\pi} = 156$ MeV.
 - S. Aoki, et al., Phys. Rev. **D79** (2009) 034503.
- 8 × 8 correlation matrix analysis using χ₁, χ₂ with 4 different levels (n = 16, 35, 100, 200) of smearing.
 - RMS radii of 2.37, 3.50, 5.92 and 8.55 lattice units.

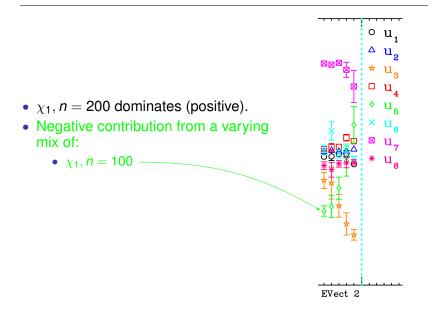
N⁺ spectrum

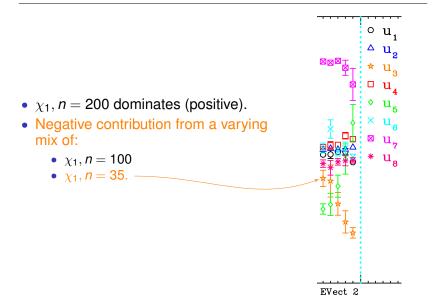




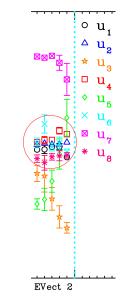








- χ_1 , n = 200 dominates (positive).
- Negative contribution from a varying mix of:
 - *χ*₁, *n* = 100
 - $\chi_1, n = 35.$
- Negligible contribution from χ₁, n = 16 and all χ₂ operators.



- First positive-parity excited state couples strongly to χ₁.
- Large smearing values are critical.
- χ_2 coupling to the Roper is negligible.
- Transition from scattering state to resonance as quark mass drops.
- At light quark mass the Roper mass is pushed up due to finite volume effects.
- How can we learn more?
 - Study multiple lattice volumes.

- First positive-parity excited state couples strongly to χ₁.
- Large smearing values are critical.
- χ_2 coupling to the Roper is negligible.
- Transition from scattering state to resonance as quark mass drops.
- At light quark mass the Roper mass is pushed up due to finite volume effects.
- How can we learn more?
 - Study multiple lattice volumes.
 - Expensive.

- First positive-parity excited state couples strongly to χ₁.
- Large smearing values are critical.
- χ_2 coupling to the Roper is negligible.
- Transition from scattering state to resonance as quark mass drops.
- At light quark mass the Roper mass is pushed up due to finite volume effects.
- How can we learn more?
 - Study multiple lattice volumes.
 - Expensive.
 - Look at the excited state structure.

- We explore the structure of the nucleon excitations by examining the Bethe-Salpeter amplitude.
- The baryon wave function is built by giving each quark field in the annihilation operator a spatial dependence,

 $\chi_1(\vec{x}, \vec{y}, \vec{z}, \vec{w}) = \epsilon^{abc} \left(u_a^T(\vec{x} + \vec{y}) C\gamma_5 d_b(\vec{x} + \vec{z}) \right) u_c(\vec{x} + \vec{w}).$

- The creation operator remains local.
- The resulting construction is gauge-dependent.
 - We choose to fix to Landau gauge.

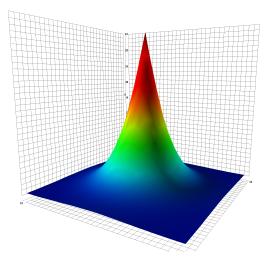
Wave function of the Roper

- Non-local sink operator cannot be smeared.
- Construct states using right eigenvector u^{α} only.

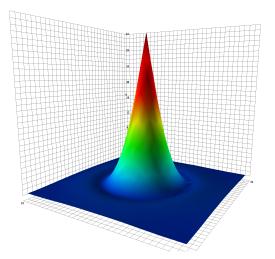


- Eigenvectors from 4 \times 4 CM analysis using χ_1 only.
- The position of the *u* quarks is fixed and we measure the *d* quark probability distribution at $m_{\pi} = 156$ MeV.

Ground state probability distribution

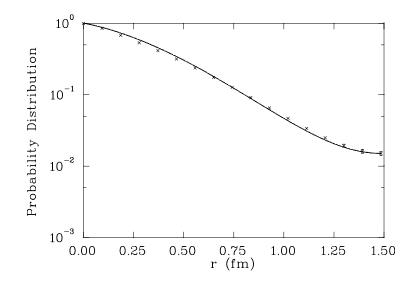


First excited state probability distribution

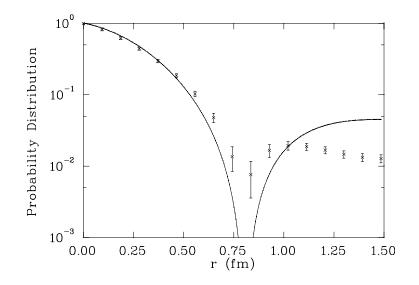


- Compare to a non-relativistic constituent quark model.
 - One-gluon-exchange motivated Coulomb + ramp potential.
 - Spin dependence in R. K. Bhaduri, L. E. Cohler and Y. Nogami, Phys. Rev. Lett. 44 (1980) 1369.
- The radial Schrodinger equation is solved with boundary conditions relevant to the lattice data.
 - The derivative of the wave function is set to vanish at a distance L_x/2.
- Two parameter fit to the nucleon radial wave function yields:
 - String tension $\sqrt{\sigma} = 400 \text{ MeV}$
 - Constituent quark mass $m_q = 360 \text{ MeV}$
- These parameters are held fixed for the excited states.

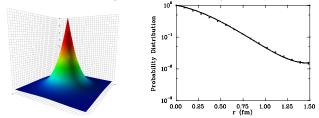
Ground state comparison



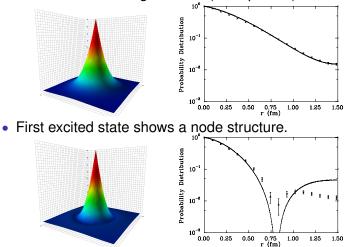
First excited state comparison



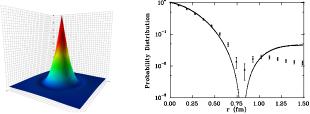
• Ground state QM agrees well (as expected).



• Ground state QM agrees well (as expected).

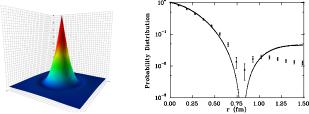


- Ground state QM agrees well (as expected).
- First excited state shows a node structure.



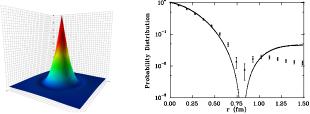
- Consistent with N = 2 radial excitation.
- QM predicts node position fairly well.
- QM disagrees near the boundary.

- Ground state QM agrees well (as expected).
- First excited state shows a node structure.



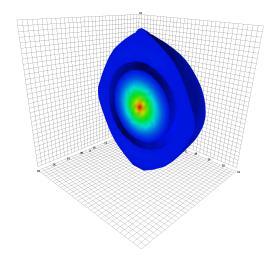
- Consistent with N = 2 radial excitation.
- QM predicts node position fairly well.
- QM disagrees near the boundary.
- Reveals why an overlap of two broad Gaussians with opposite sign is needed to form the Roper.

- Ground state QM agrees well (as expected).
- First excited state shows a node structure.

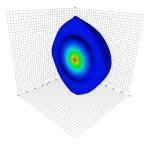


- Consistent with N = 2 radial excitation.
- QM predicts node position fairly well.
- QM disagrees near the boundary.
- Reveals why an overlap of two broad Gaussians with opposite sign is needed to form the Roper.
- Finite volume effects?

First excited state probability distribution



• Wave function should be spherically symmetric.

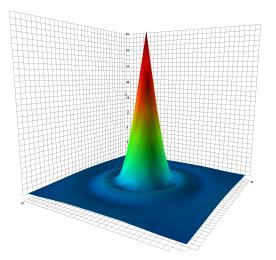


- Outer shell of Roper wave function clearly reveals distortion due to finite volume.
- Effective field theory arguments suggest the small volume will drive up the energy.

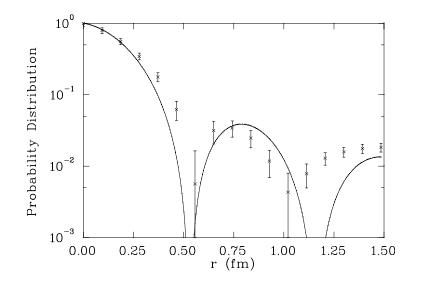
Summary

- The variational method allows us to access a state that is consistent with the Roper N(1440) with standard three-quark interpolators.
- χ_2 has negligible coupling to the Roper.
- Probing the Roper wave function reveals a nodal structure.
- Multiple χ_1 operators at large smearings are critical to form the correct nodal structure.
- Qualitative agreement with QM predictions for the Roper radial wave function.
- Finite volume effects clearly evident in the Roper probability distribution.
 - Larger lattice volumes needed!

N = 3 excited state probability distribution



N = 3 excited state comparison



N = 3 excited state probability distribution

