The Roper Puzzle

Discrepancy in various lattice calculations
Fitting methods: variation vs. sequential Bayesian fitting
πN state and S₁₁

 χ_{QCD} Collaboration:

Y. Chen, M. Gong, K.F. Liu, M. Sun, R. Suffian

Lattice 2013, Mainz, Aug. 1, 2013

Many Facets of Roper Resonance Theory: (PDG--1440 MeV)

- Quark potential model prediction is 100-200 MeV too high (Liu and Wong, 1983, Capstick and Isgur, 1986)
- Skyrmion can accommodate it as a radial excitation (J. Breit and C. Nappi, 1984, Liu, Zhang, Black, 1984; U. Kaulfuss and U. Meissner, 1985)
- Suggestion as a pentaquark (Krewald 2000); as a member of the antidecuplet
 - (Jaffe, Wilczek, 2003)
- Perhaps a hybrid (Barnes, Close, etc. 1983)
- $\blacksquare \rightarrow \text{Lattice calculations}$

Quenched Lattice Calculations of Roper

page 3

Roper on the lattice

4 issues about lattice calculations:

- Radial excitation or pentaquark state?
- Dynamical fermions
- Variation vs Bayesian fitting
- Dynamical effect

- Roper is seen on the lattice with three-quark interpolation field.
- Weight :

 $| < 0 | O_N | R > |^2 > | < 0 | O_N | N > |^2 > 0$ (point source, point sink)

Nucleon and Roper wavefunctions for $m_n = 633 \text{ MeV}$

 $O_{RN} = 0.30$

Bethe-Salpeter Wavefunction

 $O_{RN} = \int dr \ \Psi_{R}^{*}(r) \Psi_{N}(r) = 0 \text{ at non-relativistic limit,}$ $O_{RN} = \int dr \ \Psi_{R}^{*}(r) \Psi_{N}(r) \ \uparrow \text{ as } m_{q} \ \downarrow$

Roper and Nucleon Wavefunctions at $m_{\pi} = 438 \text{ MeV}$ $O_{RN} = 0.59$

R/a

Dynamical Fermions (Overlap on DWF Configurations)

Improvement of nucleon correlator with low-mode substitution

Point source: $m_N = 1.13(14)$ GeV; Z_3 grid source: $m_N = 1.08(5)$ GeV; Z_3 grid smeared source: $m_N = 1.14(2)$ GeV; Variation: $m_N = 1.16(1)$ GeV

Roper state from Coulomb wall source

m_N = 999(46) MeV m_R= 1404(112) MeV

 $24^3 \times 64$ lattice with $m_{\pi} = 331$ MeV(sea), a = 1.73 GeV⁻¹

Roper and Nucleon Wavefunctions at $m_{\pi} = 438 \text{ MeV}$ $O_{RN} = 0.59$

R/a

Variation with 2 operators

(10 - operator 1, no smearing, 23 - operator 2, 3 smearing)

Variation with wall and point sources?

Evidence of η'N GHOST State in S₁₁ (1535) Channel

Dynamical Fermions

Negative Parity Channel

Overlap on 32³ x 64 DWF lattice, La ~ 4.5 fm, sea pion mass ~ 170 MeV with Coulomb wall source

M. Selim Mahbub, et al. (CSSM, 1209.0240)

N* spectrum in LQCD & dynamical coupling

Lattice N* states (m_{π} =396MeV)

LQCD finds states as predicted in SU(6)xO(3)

Dynamics of P₁₁-states:

The bare state at ~1750 MeV through coupling to inelastic channels generates 2 poles below 1400 MeV. They are identified with the "Roper" resonance.

R. Edwards, J. Dudek, D. Richards, S. Wallace, PRD84, 074508 (2011)

Dynamical Effect

Summary

- Part of the discrepancy between the variational method and sequential Bayenes fitting is attributable to the size of the interpolation field.
- Roper is the radial excitation of nucleon with possible large couplings to Nn and N π .
- To understand the remaining difference:
 - Use Coulomb wall source/sink in the variation.
 - Compare the following ratios

$$\frac{\langle 0 | \chi_{3q} | \pi N(1/2^{\pm}) \rangle}{\langle 0 | \chi_{3q} | N(1/2^{\pm}) \rangle}$$