Spectroscopy of doubly and triply-charmed baryons from lattice QCD

Padmanath M.

Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai. India.

August 1, 2013

- arXiv:1307.7022 [hep-lat] .
- In collaboration with R. G. Edwards, N. Mathur and M. Peardon.
- Computations performed on computational facilities at DTP, TIFR, Mumbai, Jefferson Laboratory and TCHPC, Trinity College, Dublin.

PADMANATH M.

4 (u, d, s, c) degenerate flavors

We have one heavy and 2+1 light flavor quarks.

4 (u, d, s, c) degenerate flavors

We have one heavy and 2+1 light flavor quarks.

Ensemble details

Calculations performed on lattices generated by Hadron Spectrum Collaboration.

- Dynamical configurations ($N_f = 2 + 1$).
- Anisotropic lattices with $\xi = a_s/a_t \sim 3.5$.
- Scale set via m_{Ω} : $a_s = 0.12$ fm
- Lattice size : $16^3 \times 128$.
- Statistics : 96 cfgs and 4 time sources.
- Clover fermions : Non-perturbtive O(a) improvement.
- Spatial links are stout smeared.
- Quark fields are distilled.

Ensemble details

Calculations performed on lattices generated by Hadron Spectrum Collaboration.

- Dynamical configurations ($N_f = 2 + 1$).
- Anisotropic lattices with $\xi = a_s/a_t \sim 3.5$.
- Scale set via m_{Ω} : $a_s = 0.12$ fm
- Lattice size : $16^3 \times 128$.
- Statistics : 96 cfgs and 4 time sources.
- Clover fermions : Non-perturbtive O(a) improvement.
- Spatial links are stout smeared.
- Quark fields are distilled.
- Caveat : Pion mass \sim 391 MeV.

Interpolating operators

Ω_{ccc}

Non-Rel: $SU(6) \otimes O(3)$

D	1/2	3/2	5/2	7/2
0	0	1	0	0
1	1	1	0	0
2 _{hybrid}	1	1	0	0
2	2	3	2	1

 Ω_{cc} and Ξ_{cc}

Non-Rel: $SU(6) \otimes O(3)$

D	1/2	3/2	5/2	7/2
0	1	1	0	0
1	3	3	1	0
2 _{hybrid}	3	3	1	0
2	6	8	5	2

э.

Interpolating operators

Ω_{ccc}

Non-Rel: $SU(6) \otimes O(3)$

D	1/2	3/2	5/2	7/2
0	0	1	0	0
1	1	1	0	0
2 _{hybrid}	1	1	0	0
2	2	3	2	1

Whole operator set

Ω_{ccc}	G1		ŀ	Н		G ₂	
	g	и	g	и	g	и	
Total	20	20	33	33	12	12	
Hybrid	4	4	5	5	1	1	
NR	4	1	8	1	3	0	
$g \rightarrow +$	u –	→ -					

 Ω_{cc} and Ξ_{cc}

Non-Rel: $SU(6) \otimes O(3)$

Whole operator set

D	1/2	3/2	5/2	7/2
0	1	1	0	0
1	3	3	1	0
2 _{hybrid}	3	3	1	0
2	6	8	5	2

Ξ_{cc}	6	1	ŀ	4	C	2
Ω_{cc}	g	и	g	и	g	и
Total	55	55	90	90	35	35
Hybrid	12	12	16	16	4	4
NR	11	3	19	4	8	1

- * ロ * * @ * * 目 * * 目 * うへで

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (6/23)

Generalized eigenvalue problem

Using this large operator basis, with definite J^P in the continuum limit, to build the correlation matrix

$$\mathcal{C}_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0
angle = \sum_n rac{Z_i^n Z_j^{n\dagger}}{2E_n} \exp^{-E_n t}$$

Solving the generalized eigenvalue problem for this correlation matrix

$$\mathcal{C}_{ij}(t)v_{j}^{(n)}(t,t_{0})=\lambda^{(n)}(t,t_{0})\mathcal{C}_{ij}(t_{0})v_{j}^{(n)}(t,t_{0})$$

- Principal correlators given by eigenvalues $\lambda_n(t, t_0) \sim (1 - A_n) \exp^{-m_n(t - t_0)} + A_n \exp^{-m'_n(t - t_0)}$
- Eigenvectors related to the overlap factors $Z_i^{(n)} = \langle 0 | \mathcal{O}_i | n \rangle = \sqrt{2E_n} \exp^{E_n t_0/2} v_j^{(n)\dagger} C_{ji}(t_0)$

Spin identification

Discretized space-time breaks rotational symmetry down to octahedral symmetry.

- Continuum spin operators subduced to lattice irreps.
- G_1 , H and G_2 : O_h irreps representing half spin.

Λ	d_{Λ}	J
G_1	2	1/2, 7/2, 9/2,
Н	4	3/2, 5/2, 7/2,
G_2	2	5/2, 7/2, 9/2,

- Subduced operators carry a memory of the continuum spin J.
- An operator of spin *J* overlaps mainly with states of spin *J*. Overlap factors to identify spin of states.

ccc correlation matrix plot (H^g ; at t=5) : $C_{ij}/\sqrt{C_{ii}C_{jj}}$

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (9/23)

Spin identification using overlap factors : (ccc, G_1^g)

Spin identification across multiple irreps : $7/2^+$

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (11/23)

4 3 b

ヨート

Ω_{ccc} spectrum

arXiv:1307.7022 [hep-lat]

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (12/23)

-

э

Interpolating operators

Ω_{ccc}

Non-Rel: $SU(6) \otimes O(3)$

D	1/2	3/2	5/2	7/2
0	0	1	0	0
1	1	1	0	0
2 _{hybrid}	1	1	0	0
2	2	3	2	1

 Ω_{cc} and Ξ_{cc}

Non-Rel: $SU(6) \otimes O(3)$

D	1/2	3/2	5/2	7/2
0	1	1	0	0
1	3	3	1	0
2 _{hybrid}	3	3	1	0
2	6	8	5	2

(4回) (4回) (4回)

Ω_{ccc} (3/2⁺) ground state : discretization errors

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (14/23)

그는 그

Ω_{cc} spectrum

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (15/23)

A ►

문 문 문

Ξ_{cc} spectrum

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (16/23)

3

문 문 문

< 17 →

Interpolating operators

Ω_{ccc}

Non-Rel: $SU(6) \otimes O(3)$

D	1/2	3/2	5/2	7/2
0	0	1	0	0
1	1	1	0	0
2 _{hybrid}	1	1	0	0
2	2	3	2	1

 Ω_{cc} and Ξ_{cc}

Non-Rel: $SU(6) \otimes O(3)$

D	1/2	3/2	5/2	7/2
0	1	1	0	0
1	3	3	1	0
2 _{hybrid}	3	3	1	0
2	6	8	5	2

= 990

cc(q) ground states

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (18/23)

m_q dependence of energy splittings

- Spin-Orbit interactions inversly proportional to m²_q.
 Vanishes in the heavy quark limit.
 Degeneracy lifts : a measure of heavyness of the quark mass.
- Binding energy quark mass dependence. Mass of a hadron with n heavy quarks: $M_{H_{nq}} = nm_Q + A + B/m_Q + O(1/m_Q^2)$. Energy splittings : $a + b/m_Q + O(1/m_Q^2)$. Fits with heavy quark inspired functional forms.
- From energy splittings (Ξ^{*}_{cc} − D_c, Ω^{*}_{cc} − D_s and Ω_{ccc} − η_c) and (Ξ^{*}_{cc} − D^{*}_c, Ω^{*}_{cc} − D^{*}_s and Ω_{ccc} − J/ψ), we extrapolate to bottom mass and get B^{*}_c − B_c = 80 ± 8 MeV and Ω^{*}_{ccb} = 8050 ± 10 MeV.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ● ◆ ● ◆ ● ◆ ●

Spin-Orbit splittings in Ω like baryons

u and s \rightarrow Edwards, et. al., Phys. Rev. D **87**, 054506 (2013) b \rightarrow S. Meinel, Phys. Rev. D **85**, 114510 (2012)

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (20/23)

Quark mass dependence of Ω like baryons

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (21/23)

Quark mass dependence

Excited charm baryon spectroscopy from lattice QCD

PADMANATH M.

Tata Institute of Fundamental Research, Mumbai. (22/23)

Summary and conclusions

- Non-perturbative calculation for excited state spectroscopy of $\Omega_{ccc},~\Omega_{cc}$ and $\Xi_{cc}..$
- Non-relativistic spectrum pattern observed up to the second energy band.
- Identification of the spin and spatial structure of the states using the overlap factors.
- SO splittings : The degeneracy more or less satisfied for m_c .
- Energy splittings : Heavy quark inspired form gives good fit with m_b , m_c as well as m_s . For some, the fits even pass through m_l also.
- Extrapolations to bottom sector : $B_c^* B_c = 80 \pm 8$ MeV and $\Omega_{ccb}^* = 8050 \pm 10$ MeV.
- No multi hadron operators being used : Further works required to see their effects.
- Singly charm baryons under inverstigation.

PADMANATH M.