Lattice 2013

Mainz, 01.08.13

The chiral phase transition of Nf=2 QCD at zero and imaginary chemical potential

Bundesministerium für Bildung und Forschung

Owe Philipsen

in collaboration with C. Bonati, Ph. de Forcrand, M. D'Elia, F. Sanfilippo

A longstanding open issue

Difficulty of the "traditional approach"

Imaginary chemical potential as a tool to answer the question

The order of the p.t., arbitrary quark masses $\mu = 0$

Order of p.t., arbitrary quark masses $\mu = 0$

chiral critical line on $N_t = 4, a \sim 0.3 \text{ fm}$

- de Forcrand, O.P. 07
- Ist order chiral region only with coarse staggered until now
- But: $N_f = 2$ chiral O(4) vs. 1 st still open $U_A(1)$ anomaly!

Di Giacomo et al 05, Kogut, Sinclair 07 Chandrasekharan, Mehta 07 Cossu et al. 12, Aoki et al. 12

Order of p.t., arbitrary quark masses $\mu = 0$

chiral critical line on $N_t = 4, a \sim 0.3 \text{ fm}$

- de Forcrand, O.P. 07
- Ist order chiral region only with coarse staggered until now
- But: $N_f = 2$ chiral O(4) vs. 1 st still open $U_A(1)$ anomaly!

Di Giacomo et al 05, Kogut, Sinclair 07 Chandrasekharan, Mehta 07 Cossu et al. 12, Aoki et al. 12

The options for Nf=2, zero density

Pisarski, Wilczek 84

Spontaneous chiral symmetry breaking + restoration: true phase transition necessary in chiral limit!

Order depends on anomaly strength at Tc

For staggered fermions: O(4) is reduced to O(2)

or 2nd order, U(2)_L x U(2)_R / U(2)_V Vicari LAT 07

Nf=2: chiral transition from scaling behaviour?

Traditional approach: test consistency with scaling for decreasing pion mass Example: Wilson quarks, tmfT 13

 $+a_t\tau h+b_1h+\ldots$

Problems: - different critical exponents indistinguishable;

- maybe too far outside scaling region;

- no unambiguous signal for criticality

 $1/(\beta \delta) = 0.537, 0.638$ $1/\delta = 0.21, 0.20$ for O(4) and Z(2)

Different approach: use imaginary μ ! de Forcrand, O.P. LAT II

- chiral critical surface continues to imaginary chemical potential
- no sign problem
- chiral transition stronger, i.e. visible at larger quark masses!

de Forcrand, O.P. 10

Recall Roberge-Weiss symmetry at imaginary μ

$$Z\left(i\frac{\mu_i}{T} + i\frac{2\pi n}{N}\right) = Z\left(i\frac{\mu_i}{T}\right)$$

Strategy: fix $\frac{\mu_i}{T} = \frac{\pi}{3}, \pi$, measure Im(L), order parameter at $\frac{\mu_i}{T} = \pi$

determine order of Z(3) branch/end point as function of m

Nf=2: D'Elia, Sanfilippo 09 Nf=3: de Forcrand, O.P. 10 Talks: Pinke, Alexandru

Critical lines at imaginary $\,\mu$

-Connection computable with standard Monte Carlo!

shape, sign of curvatures determined by tricritical scaling!

Heavy quarks: deconfinement critical surface

3d, 3-state Potts: same universality class!

de Forcrand, Kim, Kratochvila, Takaishi 06 de Forcrand, O.P. 10 QCD using hopping exp.

Fromm, Langelage, Lottini, O.P. 12

Now Nf=2 backplane

Can tricritical scaling constrain the phase diagram in the $N_f = 2$ backplane?

The Nf=2 backplane de Forcrand, OP LAT II

One tricritical point known - where is the other?

Observable: Binder cumulant

$$B_4(\bar{\psi}\psi) \equiv \frac{\langle (\delta\bar{\psi}\psi)^4 \rangle}{\langle (\delta\bar{\psi}\psi)^2 \rangle^2} \xrightarrow{V \to \infty} \begin{cases} 1.604 & \text{3d Ising} \\ 1 & \text{first-order} \\ 3 & \text{crossover} \end{cases}$$

Fix a mass, then scan in chemical potential for critical point on different volumes

Result on Nt=4

Plenary Szabo

Result on Nt=4

cf. D'Elia, Di Giacomo, Pica 05:

inconsistent with O(2), hints of 1 st, but much larger quark masses...

Cutoff effects ?:

 $N_t = 6, a \sim 0.2 \text{ fm}$

 $\frac{m_{\pi}^{c}(N_{t}=4)}{m_{\pi}^{c}(N_{t}=6)} \approx 1.77 \qquad N_{f}=3$

de Forcrand, Kim, O.P. 07 Endrödi et al 07

improved: BNL-Bielefeld, talk Ding

Staggered chiral transition weaker in continuum than on finite lattice spacing

Expect same for tricritical points; need continuum extrapolation

Outlook:

Conclusions

- Critical structures at imaginary chemical potential identifiable unambiguously
- Ist order chiral transition at imaginary chemical potentials for staggered quarks on Nt=4
- Z(2) boundary to crossover region has known functional form (tricriticality)
- Controlled extrapolation to zero (and positive) chemical potential possible
- Staggered Nf=2 chiral transition on Nt=4 is first order!
- Repeat with larger Nt ...