Nucleon form factors with light Wilson quarks

Jeremy Green^a

Michael Engelhardt^b Stefan Krieg^{c,d} Stefan Meinel^a John Negele^a Andrew Pochinsky^a Sergey Syritsyn^e

^aCenter for Theoretical Physics, Massachusetts Institute of Technology

^bPhysics Department, New Mexico State University

^cBergische Universität Wuppertal

^dIAS, Jülich Supercomputing Centre, Forschungszentrum Jülich

^eLawrence Berkeley National Laboratory

The 31st International Symposium on Lattice Field Theory July 29-August 3, 2012

2 High-precision study of excited states

Dirac and Pauli form factors near the physical m_{π}

Controlled study of finite-volume effects

Dirac and Pauli form factors

Dirac and Pauli form factors:

$$\langle p(P',s')|\bar{q}\gamma^{\mu}q|p(P,s)\rangle = \bar{u}(p',s')\left(\gamma^{\mu}F_1^q(Q^2) + i\sigma^{\mu\nu}\frac{\Delta_{\nu}}{2m_p}F_2^q(Q^2)\right)u(p,s),$$

where $\Delta = P' - P$, $Q^2 = -\Delta^2$.

Isovector combination:

$$F_{1,2}^{v} = F_{1,2}^{u} - F_{1,2}^{d} = F_{1,2}^{p} - F_{1,2}^{n},$$

where $F_{1,2}^{p,n}$ are form factors of the electromagnetic current in a proton and in a neutron.

• Dirac and Pauli radii defined via slope at $Q^2 = 0$:

$$F_{1,2}(Q^2) = F_{1,2}(0)(1 - \frac{1}{6}r_{1,2}^2Q^2 + O(Q^4));$$

 $F_2(0) = \kappa$, the anomalous magnetic moment.

• Proton charge radius, $(r_E^2)^p = (r_1^2)^p + \frac{3\kappa^p}{2m_p^2}$, has 7σ discrepancy between measurements from e-p interactions and from Lamb shift in muonic hydrogen.

High-precision study of excited states

- USQCD ensemble with N_f = 2 + 1 Wilson-clover quarks coupled to stout-smeared gauge fields.
- $a \approx 0.114 \text{ fm}, 32^3 \times 96, m_\pi \approx 317 \text{ MeV} \longrightarrow m_\pi L = 5.9$
- Five source-sink separations: $T/a \in \{6, 8, 10, 12, 14\}, T \sim 0.7-1.6$ fm;
- Source tuned to optimize ground state overlap.
- ~ 24000 measurements yields reasonably precise results.
- Renormalization factors not yet computed, but this does not affect excited-states study.

Ground-state matrix elements from multiple T

Standard ratio-plateau method: compute ratio

$$R(T,\tau) = C_{3pt}(T,\tau)/C_{2pt}(T)$$

= $c_{00} + c_{10}e^{-\Delta E\tau} + c_{01}e^{-\Delta E(T-\tau)} + c_{11}e^{-\Delta ET} + \dots,$

where c_{00} is the desired ground-state matrix element. Then average a fixed number of points around $\tau = T/2$, yielding asymptotic errors that fall off as $e^{-\Delta E_{10}T/2}$.

Summation method (PoS(Lattice 2010) 147 [1011.1358]; *ibid.* 303 [1011.4393]): compute sums

$$S(T) = \sum_{\tau} R(T, \tau) = b + c_{00}T + dTe^{-\Delta ET} + \dots,$$

then find their slope, which gives c_{00} with errors that fall off as $Te^{-\Delta E_{10}T}$.

• Generalized pencil-of-function (GPoF) method (AIP Conf. Proc. 1374, 621 [1010.0202]): recognize time-displaced operator $N^{\tau}(t) \equiv N(t + \tau)$ as linearly independent from N(t). Use the variational method to find a linear combination of N and N^{τ} that eliminates the first excited state. Applying the ratio-plateau method yields the ground-state with errors $e^{-\Delta E_{20}T/2}$.

Isovector Dirac form factor $F_1^v(Q^2)$

Isovector Pauli form factor $F_2^{\nu}(Q^2)$

BMW action and ensembles

- N_f = 2 + 1 tree-level clover-improved Wilson fermions coupled to double-HEX-smeared gauge fields.
- Pion mass ranging from 149 MeV to 356 MeV.
- Ten coarse lattices with a = 0.116 fm; one fine lattice with a = 0.09 fm.
- ► No disconnected diagrams, so we focus on isovector observables.
- Three source-sink separations for controlling excited-state contributions: T ∈ {0.9, 1.2, 1.4} fm; use summation method for main results.

Ensembles

Areas of circles scale with number of measurements: largest is 24,000.

Chiral extrapolation

Use SU(2) heavy baryon ChPT, to order ϵ^3 in SSE. Inputs:

- F_{π}^{0} , pion decay constant
- Δ , delta-nucleon mass difference
- g_A^0 , axial charge
- c_A , $\pi N\Delta$ coupling
- c_V , magnetic $\gamma N\Delta$ coupling

Fit parameters

- $(r_1^2)^{v}$: 1
- κ^ν: 2
- $\kappa^v(r_2^2)^v$: 1

Dipole fitting to $F_1^{\nu}(Q^2)$

Nucleon form factors with light Wilson quarks

Dipole fitting to $F_2^{\nu}(Q^2)$

Nucleon form factors with light Wilson quarks

Dipole fitting to $F_2^{\nu}(Q^2)$

Nucleon form factors with light Wilson quarks

Isovector anomalous magnetic moment κ^{ν}

Isovector Pauli radius $(r_2^2)^{\nu}$

Sachs form factors

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{2m_N}F_2(Q^2)$$
$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Slopes at $Q^2 = 0$ give rms charge and magnetic radii.

- Compare:
 - 1. Isovector $G_E(Q^2)$, $G_M(Q^2)$ from lattice calculation.

 Parameterization of experimental data:
 W. M. Alberico, S. M. Bilenky, C. Giunti, K. M. Graczyk, "Electromagnetic form factors of the nucleon: new fit and analysis of uncertainties," Phys. Rev. C 79, 065204 (2009).
 4 parameters for each of *G_{Ep}*, *G_{Mp}*, *G_{Mn}*; 2 parameters for *G_{En}*: determined from fit to experiment.

Electric form factor $G_E^{\nu}(Q^2)$

 m_{π} = 149 MeV, ratio method, T = 10a

Electric form factor $G_E^{\nu}(Q^2)$

 m_{π} = 149 MeV, summation method; p = 0.64

Electric form factor $G_E^{\nu}(Q^2)$

 m_{π} = 254 MeV, summation method; $p = 3 \times 10^{-5}$

Magnetic form factor $G_{\mathcal{M}}^{\nu}(Q^2)$

 m_{π} = 149 MeV, ratio method, T = 10a; p = 0.0006

Magnetic form factor $G_{\mathcal{M}}^{\nu}(Q^2)$

 m_{π} = 149 MeV, summation method; p = 0.81

Magnetic form factor $G_{\mathcal{M}}^{\nu}(Q^2)$

 m_{π} = 254 MeV, summation method; p = 0.0007

Controlled study of finite L_s and L_t effects

- Four lattice ensembles at m_π ≈ 250 MeV with a = 0.116 fm that differ only in their volume: 32³ × 48, 24³ × 48, 32³ × 24, and 24³ × 24.
- $m_{\pi}L_s = 3.6$ and 4.8
- $m_{\pi}L_t = 3.6$ and 7.2
- Test " $m_{\pi}L = 4$ " rule of thumb.
- Results:
 - Effects consistent with zero when comparing noisy summation data.
 - Shortest source-sink separation data suggest at $m_{\pi}L_s = 4$:
 - possible ~ -5% effect on κ^{ν} and $(r_2^2)^{\nu}$
 - effect on $(r_1^2)^{\nu}$ is consistent with zero and less than 2%.
 - ► No effect seen for *g*_A.

Summary

- With both
 - 1. near-physical m_{π}
 - 2. reduced excited-state contributions

good agreement is achieved with experiment for isovector vector form factors.

- High-precision calculations at $m_{\pi} \approx 317$ MeV corroborate the excited-state behavior seen in the noisier calculations at near-physical pion masses.
- Dedicated finite- L_s and L_t study at $m_\pi \approx 250$ MeV finds that $m_\pi L = 4$, effects are generally consistent with zero.

Source tuning, high-precision ensemble

Wuppertal smearing with $\alpha = 3$, N = 35 using APE-smeared (A = 2.85, N = 25) gauge links. Jeremy Green (MIT) Nucleon form factors with light Wilson guarks Lattice 2013

Other form factors

Axial and induced pseudoscalar form factors:

$$\langle p', \lambda' | \bar{q} \gamma^{\mu} \gamma_5 q | p, \lambda \rangle = \bar{u}(p', \lambda') \left(\gamma^{\mu} G^q_{\mathcal{A}}(Q^2) + \frac{\Delta^{\mu}}{2m} G^q_{\mathcal{P}}(Q^2) \right) \gamma_5 u(p, \lambda).$$

Generalized form factors of the quark energy-momentum operator

$$\langle p', \lambda' | \bar{q} \gamma^{\{\mu} i \overleftrightarrow{D}^{\nu\}} q | p, \lambda \rangle = \bar{u}(p', \lambda') \left(\bar{p}^{\{\mu} \gamma^{\nu\}} A_{20}^q(Q^2) + \frac{i \bar{p}^{\{\mu} \sigma^{\mu\}\alpha} \Delta_{\alpha}}{2m} B_{20}^q(Q^2) + \frac{\Delta^{\{\mu} \Delta^{\nu\}}}{m} C_2^q(Q^2) \right) u(p, \lambda)$$

Source and sink momenta

#	$\langle \vec{n}' \vec{n} \rangle$
0	$\langle 0, 0, 0 0, 0, 0 \rangle, \langle -1, 0, 0 -1, 0, 0 \rangle$
1	$\langle 0,0,0 1,0,0 angle$
2	$\langle -1,0,0 {-}1,1,0 angle$
3	$\langle 0,0,0 1,1,0 angle$
4	$\langle -1,0,0 -1,1,1 angle$
5	$\langle -1,0,0 0,1,0 angle$
6	$\langle 0,0,0 1,1,1 angle$
7	$\langle -1,0,0 0,1,1 angle$
8	$\langle -1,0,0 1,0,0 angle$
9	$\langle -1,0,0 1,1,0 angle$
10	$\langle -1,0,0 1,1,1 angle$
$\vec{p} = \frac{2}{3}$	$\frac{l\pi}{L_s}\vec{n}$

Isovector Axial form factor $G_A^{\nu}(Q^2)$

Isovector induced pseudoscalar form factor $G_p^{\nu}(Q^2)$

Isovector generalized form factor $A_{20}^{\nu}(Q^2)$

Isovector anomalous magnetic moment κ^{ν}

Isovector Pauli radius $(r_2^2)^{\nu}$

Axial charge g_A

Isovector quark momentum fraction $\langle x \rangle_{u-d}$

$L_s \rightarrow \infty, L_t \rightarrow \infty$ extrapolation

Fit $A + Be^{-m_{\pi}L_s} + Ce^{-m_{\pi}L_t}$ to summation data:				
	Α	Be^{-4}	Ce^{-4}	
$(r_1^2)^{v}$	0.338(48)	0.008(38)	0.003(28)	
κ^{v}	3.19(36)	-0.12(35)	-0.20(23)	
$(r_{2}^{2})^{v}$	0.476(98)	-0.032(106)	-0.028(68)	
ВА	1.204(67)	-0.009(54)	-0.016(39)	
$\langle x \rangle_{u-d}$	0.178(18)	0.021(14)	-0.014(10)	

Relative error, $m_{\pi}L_s = 4$

Jeremy Green (MIT)

Relative error, $m_{\pi}L_t = 4$

Jeremy Green (MIT)