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Motivation

s (near) Conformal Field Theories are important
BSM walking technicolor

AdS/CFT weak-strong duality
Model building & Critical Phenomena in general

Lattice difficulty: scales are exponentially divergent.

Linear Hypercubic  vs Exponential Radial Lattice

a < Ar <L vs a< Alog(r) <L



Early History

[ S. Fubini, A. Hanson and R. Jackiw PRD 7, 1732 (1972)

Abstract: A field theory is quantized covariantly on Lorentz-invariant
surfaces. Dilatations replace time translations as dynamical equations of
motion. This leads to an operator formulation for Euclidean quantum
field theory. A covariant thermodynamics is developed, with which the

Hagedorn spectrum can be obtained, given further hypotheses. The
Virasoro algebra of the dual resonance model is derived in a wide class

of 2-dimensional Euclidean field theories.
= J.Cardy J. Math. Gen 18 757 (1985).

Abstract: The relationship between the correlation length and critical
exponents in finite width strips in two dimensions is generalised to
cylindrical geometries of arbitrary dimensionality d. For d > 2 these
correspond however, to curved spaces. The result is verified for the
spherical model



Narrative

. Our first attempt

-- Lattice Radial Quantization: 3D Ising R.C.B., G.T. Fleming
and H. Neuberger, , Phys. Lett. B 721 (2013) 299

. What worked and what failed
IIl. Finite Elements to the rescue ?

IV. Future hopes and dreams
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dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first
two descendants (I = 1,2), we obtain an estimate for 5 = 0.034(10). We also observed small deviations
from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial
lattice action will be required to guarantee conformal symmetry at the Wilson-Fisher fixed point in the
continuum limit.
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Radial Quantization

Evoluton: H = Pypint — D in 7 = log(r)

ds® = dztdx, = €7 [dT + dﬂz]

Can drop /

d 1
— ]R{ XD
Weyl factor!

"time” T =1log(r), "mass” A=d/2—-1+n

D%a;,lau:rar:aﬁ



CFT are highly constrained

1
More than hyper scaling <gb(x1)gb(x2)> =C ‘:l? _ ‘QA
(scale invariance). 1 2
2 and 3 point correlators Fio
are determined. Oi(z1)0,(z2) = Z oy — xz‘zi"‘Ag_Ak Or(0)

OPE & factorization completely fixed the theory”*
(i.e. Data: spectral + couplings to conformal blocks)
P1 on ¢1
J14k complete sum over
Z Fron Pk iy — Z br the conformal blocks
k k
b2 b3 b2

“partial waves”.

03k Only “tree” diagrams!

P4
3

* “Solving the 3D Ising Model with the Conformal Bootstrap” (EI-Showk, Paulos,
Poland, Rychkov, Simmons-Duffin and Vichi) arXiv:1203.6064v1v [hep-th] (2012)



Inequalities from Bootstrap*

Allowed Region Assuming A(e')=3.8

Allowed Region Assuming A(e)) A(E/) Z 3.8
Ac A,
18f
1.6-Ismg A(E/) Z 3.4
L4p Ll
1.2} Stronger assumptions!
e A(€) 23
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*“Solving the 3D Ising Model with the Conformal Bootstrap” (EI-Showk, Paulos,
Poland, Rychkov, Simmons-Duffin and Vichi) arXiv:1203.6064v1v [hep-th] (2012)



Power Law Correlator

Conformal correlator: (¢(x1)p(x2)) =C

T1AT2A<¢(717 Q1)¢(7'27 Q2)> = C [7“2/7"1 I 7“1/7"2 — 2COS(912)]A

~ (e log(rz) —log(r)A
— OG_TA

With |z1 — x2|* = rire[re/r1 + 11 /12 — 2 cos(612)]

as 7 = log(ry) — log(r1) — oo



[ esson #1:

Radial Quantization is not necessarily Conformal

Consider large N 2d O(N) sigma model:

(what happens to conformal anomaly?)
-- Quantize on R”*2: Get Lorentz invariant theory

-- Quantize on RxS1: Get Dilation invariant

But NOT both!



What happens to Radial Quantization? Try it?

6—\/l2—|—,u2|7'—7'/|

(@*), (T)®] (7)) = 6 6

LESSON: Descendants don’t have integer-spaced descendants. Consequently,
we cannot construct translation generators satisfying the correct commutation
relations with dilatations in the sector generated by the action of ® on the
vacuum. The deviation of the dilatation spectrum from equal spacing is small
if [ > u. Because inversion has also been preserved in the quantization, if
translations could be realized, special conformal transformations would come
in automatically and the full conformal group would be realized. Because of
rotation invariance, only one linear combination of translations needs to be

considered in detail.



[ esson #2:

3-d Ising at Wilson-Fisher FP

lez'ng —

Z 66 Zt,(m,y> U(t7 Qj)O(t, y) + 5 Zt,x O<t + 17 CIZ’)O’(t, I’)

o(x,t)==%x1

lim O(z)|0)
x—0
=10)
R X SQ state-op corr

e T = logr — 00



Order s Refined Triangulated Icosahedron

1=0 (A),1(T1), 2 (H) are irreducible 120
Iscosahedral subgroup of O(3)



Fixed t lattice are s refined Icosahedrons

s=38

vertices:
N=10+ 2*s*s = 138

edges:
E=3"N-6

faces:
F=E-N+2=2"N-4

Continuum limit is s — 0o at 8 = Beritical



Determining beta_critical

Icosahedron(s) N,=8xs Icosahedron(s) N,=4xs
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Determining beta_critical

UL(B) = ﬁ(ﬁ - Bc)Ll/V + b L% + bQL_W/V + ..
— U*+a1(5—5C)L1/”+b1L_“-|-b2L—7/v+...

|
(M) .
U = [)=1— _
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Improved Operators

Ulm Z\/‘Txyvlm xa¢az) ( )

Area of spherical triangle
projected on the units sphere

2+10s”
sli>nolo z_:l Wy }/l/m/(eaza gbx)}flm(gaza ¢az) = 410110/ m

Orthonormality
to 1073, 4% 107°, 5% 107°
at s = 16, 64, 256 respectively



Observables

Clm(t) — Z V W Wy Y*(Z%) <U(t -+ thw)O(tOv?J» Ylm(?j)

t07x7y
cosh fit: Clm(t) — C[e_mlt e_ml(Nt_l_t)]
for t=0,- Ny—1,1=01.2. m=—l--- 1
& 1
m; = — A Al:——l—ﬁ—l—l
S 2 2

After you adjust ¢ = speed of light so Ajp1 — A =1
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Fitting correlators

Discrete states have exact cosh correlators

Ci(t) = Ay cosh(—pu(t —T/2))

Transform tO k—space Disconnected piece
T—1

~ 1 itk

Ci(k) = thzge Ci (1)

Good fits required 3 mass



Check Descendant Relation & rescale "log(r)”

Icosahedron(s), T=8xs, £=0.16098700
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Current Fit: Ay, = 0.5175(6)

Icosahedron(s), T=8xs, =0.16098700
0.64 I I I I ‘ I I I I ‘ I I /

D175




Primary operators 3-d Ising Model

Operator | Spinl | Z | A Exponent
S 0 — | 0.5182(3) A=1/24n/2
s’ 0 — | 2 4.5 A =34+ wy
€ 0 + | 1.413(1) A=3—-1/v
g’ 0 + | 3.84(4) A=3+w
g 0 + | 4.67(11) A =3+ wy
T 2 + 13 A =3
Clvr 4 + | 5.0208(12) | A =3+ wnr

Low-lying primary operators of the 3D Ising model at criticality.
K, 00)] =0

Ors1(x) = [P, O(x)] = i9,0(x)

Primary | =0

Descendants 1> 0



Failure to recover O(4,1) of [ = 37

Icosahedron(s), T=8xs, £=0.16098700
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phi 4" and Finite Element Method

7 /De_ﬁKij(¢i — ¢j)% — dw; (@7 — 1)°

y
- project spherical
. - - .4 friangle onto
..U - local tangent plane

v




Linear Finite Element Method for

triangulate Manifold
(0, %0)
Ki(z,y) = lhe—a— CE: ;Owo)y]/lm
: Ky(ey) = o= ho
01 0
! 2 o\ = g
02 Ko(z,y) 0
(0,0) (h2,0) triangle on the

l12

tangent plane

On each triangle expand: ¢(x,y) Z K;(x,y)¢p; an integrate

/A dxdyd,é(x,y)0.¢(x,y) = 57—[(l51 + 150 — 112)(¢1 — ¢p2)” + cyclic]



Spectrum of FEM

Laplacian on a sphere
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Comment on FEM Radial CFT

(1) There are theorems such errors are O(an+1)
“for piecewise FEM of order n with max diameter a for all
simplices with bounded angles” .

(2) The local derivative expansion does not give
V¢ + O(a?)
BUT the spectra or the operator converges if

well separated from the 1/a cut-off (like Wilson Flow?)

(3) Perturbative (epsilon expansion) proof is not impossible?
Non-perturbative F.P. is very difficult except numerically?



The simulation program is written

and being tested

(1) Monte Carlo is a “standard” mixture of metropolis, over
relax and Wolff methods from:

(i) M. Hasenbusch, *A Monte Carlo study of leading order scaling corrections
of phi**4 theory on a three-dimensional lattice” J.Phys. A 32 (1999) 4851 *

(ii) Ulli Wolff, “Collective Monte Carlo Updating for Spin Systems PRL 62: 361 (1989)

(iii) R.C.B. and P. Tamayo, “Embedded Dynamics for phi4 Theory”, PRL 62:1087(1989)

(2) Will compute higher primaries, even Z2 sector,
Energy momentum tensor, 2-2 partial wave amplitude etc.

(3) The code can run any graph, so we will replace sphere by torus
to reproduce phi 4t numbers from Hasenbusch et al
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Just starting to get Numerical Results!

Still verifying code but ... here are two PREMINARY tests~

Binder Cummulant Antiperiodic/Periodic

2/3 (1- 2,/Z,)

L | 1 | 1 | 1 | 1
s | . | ! | ! | ! 0%755 0.276 0.2765 0.277 0.2775 0.278
().%755 0.276 0.2765 0.277 0.2775 0.278 B

p




Future Challenges & Directions

Many extensions are interesting once this is
“proven” to work for simple models:

Easy problems:
O(N) model in 3-d compared with large N
Strengthen bootstrap inequalities ?

Hard Problems:

Gauge fields (with discrete Chirstoffel connection)?
Fermions (with discrete spin connection) ?

Flow from UV to conformal IR fixed points for BSM?

(Dilation operator is only asymptotically const in IR
“time".) uv



Extra Slides



Euclidean Conformal Field Theories

O(d+1,1) adds Dilations and Inversion to Poincare
transformations

\

agebra: Bp (inv — trans — inv)

K, O0(x)] = i(z°0, — 22,270, + 22,A)O(x)
D,0(x)] = i(2"0, — A)O(x)

D,P,|=—iP, , [D,K,]=+iK, |

[K/M P,LL] — QiD



Improved cluster Estimator

Swendsen-Wang: Real space

Nconfzg
1
g(.flf T y) — <Sa:5y> = N Z AC?L (Qj)ACz (y)
config 1 Z_

Ac(x)= 1ifx € C else 0

Wolff single cluster
1 Nconfzg 1
glm(k) ~ N . Z ’_‘ Z ’LQﬂ'kt/LtY (Q )‘
config

=1 t,xeC

Note: All to All O(V) improved estimator in Momentum space *
*C. Ruge, P. Zhu and F. Wagner Physica A (1994) 431:



Numerical Test (so far)

= Equalspacing test of descendants:
H2 — M1
K1 — Mo

= 0.999(1)

= “Speed of light” c = 1.5105(7)

B Butcritical point 3., = 0.16098703(3)

E Current anomalous dimensions (more soon)
from Binder: w+1/v=2.51(11)
from corr: A, =1/2+n/2=0.5175(6)

Simulation are on going to reduce errors



