

Charmonium-like states from scattering on the lattice

Lattice 2013

29th July – 3rd August, Mainz

Sasa Prelovsek

University of Ljubljana & Jozef Stefan Institute, Slovenia

In collaboration with: Luka Leskovec, Daniel Mohler

Motivation

• Why simulate <u>c</u>c via

- Status of previous simulations
 (a) only <u>c</u>c well below th. treated OK
- (b) interesting <u>c</u>c states lie near threshold : treatment ignored existence of threshold
- (c) treatment of <u>c</u>c resonances ignored the strong decay

exception: [Bali, Ehmann, Collins 2011]

typical results obtained using only <u>CC interpolators</u>

I will present results for three channels:

D(p)

<u>J/Ψ(p)</u>

• X(3872)

exp: J^{PC}=1⁺⁺, I=0 & 1 near D^0D^{0*} threshold: (b)

 Z_c⁺(3900) → J/Ψ π⁺ exp: J^{PC}=?⁺, I=1 near DD* threshold:

• X_{c0}(2P) : exp ?

J^{PC}=0⁺⁺, I=0

X(3872)

D(p)

Lattice simulation

• 280 gauge config with dynamical u,d quarks [generated by A. Hasenfratz]

 $N_f = 2$ $a = 0.1239 \pm 0.0013 \ fm$ $a^{-1} = 1.58 \pm 0.02 \ GeV$

 $N_L^3 \times N_T = 16^3 \times 32$ $L \approx 2 \ fm$ $T = 4 \ fm$ $m_\pi \approx 266 \ MeV$

reasons for small L : 1) $\underline{D}(p)D(-p)$, p=n $2\pi/L$ to dense for larger L 2) allows full distillation method [Peardon et al, 2009]

dynamical u, d , valence u,d,s : Improved Wilson Clover
 valence c: Fermilab method [EI-Khadra et al. 1997]

a set using r0; m_s set using ϕ m_c set using $\frac{1}{4}[M_2(\eta_c) + 3M_2(J/\psi)]_{lat} = \frac{1}{4}[M(\eta_c) + 3M(J/\psi)]_{exp}$

 heavy quark treatment tested on conventional <u>charmonium</u> and charmed resonances mesons with satisfactory results: [D. Mohler, S.P., R. Woloshyn, PRD 2013]

Charmonium-like

X(3872)

X(3872): experimental facts

- first observed in 2003 [Belle PRL 2003, cited >800 times]
- J^{PC}=1⁺⁺ [LHCb, 2013]
- sits within 1 MeV of D^0D^{0*} threshold
- selected decays

 $X(3872) \rightarrow J/\Psi \; \omega \; (\; I=0 \;)$

 $X(3872) \rightarrow J/\Psi \rho ~(~I=1~)$

Interpolators : $J^{PC}=1^{++}(T_1^{++})$, P=0, I=0, 1

 $O_{1-8}^{\bar{c}c} = \bar{c} \ \hat{M}_i \ c(0)$ (only I = 0)

$$O_{1}^{DD^{*}} = [\bar{c}\gamma_{5}u(0) \ \bar{u}\gamma_{i}c(0) - \bar{c}\gamma_{i}u(0) \ \bar{u}\gamma_{5}c(0)] + f_{I}\{u \to d\}$$

$$O_{2}^{DD^{*}} = [\bar{c}\gamma_{5}\gamma_{t}u(0) \ \bar{u}\gamma_{i}\gamma_{t}c(0) - \bar{c}\gamma_{i}\gamma_{t}u(0) \ \bar{u}\gamma_{5}\gamma_{t}c(0)] + f_{I}\{u \to d\}$$

$$O_{3}^{DD^{*}} = \sum_{e_{k}=\pm e_{x,y,z}} [\bar{c}\gamma_{5}u(e_{k}) \ \bar{u}\gamma_{i}c(-e_{k}) - \bar{c}\gamma_{i}u(e_{k}) \ \bar{u}\gamma_{5}c(-e_{k})] + f_{I}\{u \to d\}$$

$$O_1^{J/\psi V} = \epsilon_{ijk} \ \bar{c}\gamma_j c(0) \ [\bar{u}\gamma_k u(0) + f_I \ \bar{d}\gamma_k d(0)]$$

$$O_2^{J/\psi V} = \epsilon_{ijk} \ \bar{c}\gamma_j \gamma_t c(0) \ [\bar{u}\gamma_k \gamma_t u(0) + f_I \ \bar{d}\gamma_k \gamma_t d(0)]$$

$$I = 0: \quad f_I = 1, \quad V = \omega$$

 $I = 1: \quad f_I = -1, \quad V = \rho$

- we calculate all contractions
- certain contractions where c does not propagate from t_i to t_f are nosiy

- results that follow are based only on Wick contractions where c propagates from t_i to t_f
- the remaining ones suppressed by OZI rule [see also Levkova, DeTar 2011]
- their effect will be addressed on follow-up analysis

variational method: $C(t) \vec{\psi}^{(n)}(t) = \lambda^{(n)}(t) C(t_0) \vec{\psi}^{(n)}(t) \rightarrow E_n, \langle O_i | n \rangle$

[S.P., L. Leskovec, arXiv: 1307.5172]

12

$D\underline{D}^*$ scattering phase shift in s-wave (I=0)

Similar phenomenon observed for:

• pn bound st.: NPLQCD:1301.5790, PACS-CS PRD84 (2011) 054506]

• DK bound st.: [talk my D. Mohler]

 δ from levels 2,3 using Luscher's f.: 	$p \cdot \cot \delta(p) = rac{2 \ Z_{00}(1;q^2)}{\sqrt{\pi}L}$,
effective range appro	X. $p \cot \delta(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2$
	$a_0 = -1.7 \pm 0.4 \text{ fm}$ $r_0 = 0.5 \pm 0.1 \text{ fm}$

• large negative a₀ agrees with one shallow BS according to Levinson's t. [Sasaki & Yamazaki 2006]

•
$$\bot \rightarrow \infty$$
 bound st. X

$$S \propto [\cot \delta - i]^{-1} = \infty, \quad \cot \delta(p_{BS}) = i$$

$$p_{BS}^{2} = -0.020(13) \text{ GeV}^{2}$$

$$m_{X}^{lat, L \rightarrow \infty} = E_{D}(p_{BS}) + E_{D^{*}}(p_{BS})$$

X(3872)	$m_X\!-\!rac{1}{4}(m_{\eta_c}\!+\!3m_{J/\psi})$	$m_X - (m_{D^0} + m_{D^{0*}})$
$\mathrm{lat}^{L\!\to\!\infty}$	$815\pm7~{\rm MeV}$	$-11\pm7~{\rm MeV}$
$^{\mathrm{exp}}$	$804\pm1~{\rm MeV}$	$-0.14\pm0.22~{\rm MeV}$

Composition of established X(3872)

overlaps

 $\langle O_i | n \rangle$

Z_c⁺(3900) : experimental facts

- discovered by Bes III [march 2013, arXiv:1303.5949]
- confirmed by Belle, CleoC [april 2013]
- $Z_c^{+}(3900) \rightarrow J/\Psi \pi^+$

<u>c</u>c <u>d</u>u

can not be quark-antiquark !!

• exp: I=1, C =
$$-$$
, J^P = ??

Lattice search for $Z_c^+(3900)$ in $J^{PC}=1^{+-}$, I=1 channel

- JP=1+ is phenomenologicaly favored choice; J/ $\Psi \pi^+$ are in s-wave
- Interpolators: $J^{PC}=1^{+-}(T_1^{+-})$, P=0, I=1

$$\begin{split} O_1^{J/\psi \ \pi} &= \bar{c} \gamma_i c(0) \ [\bar{u} \gamma_5 u(0) - \ \{u \to d\}] \\ O_2^{J/\psi \ \pi} &= \bar{c} \gamma_i \gamma_t c(0) \ [\bar{u} \gamma_5 \gamma_t u(0) - \ \{u \to d\}] \\ O_3^{J/\psi \ \pi} &= \sum_{e_k = \pm e_{x,y,z}} \ \bar{c} \gamma_i c(e_k) \ [\bar{u} \gamma_5 u(-e_k) - \ \{u \to d\}] \end{split}$$

$$\begin{aligned} O_1^{DD^*} &= [\bar{c}\gamma_5 u(0) \ \bar{u}\gamma_i c(0) + \bar{c}\gamma_i u(0) \ \bar{u}\gamma_5 c(0)] - \ \{u \to d\} \\ O_2^{DD^*} &= [\bar{c}\gamma_5\gamma_t u(0) \ \bar{u}\gamma_i\gamma_t c(0) + \bar{c}\gamma_i u\gamma_t (0) \ \bar{u}\gamma_5\gamma_t c(0)] - \ \{u \to d\} \\ O_3^{DD^*} &= \sum_{e_k = \pm e_{x,y,z}} [\bar{c}\gamma_5 u(e_k) \ \bar{u}\gamma_i c(-e_k) + \bar{c}\gamma_i u(e_k) \ \bar{u}\gamma_5 c(-e_k)] - \ \{u \to d\} \end{aligned}$$

Lattice search for $Z_c^+(3900)$ in $J^{PC}=1^{+-}$, I=1 channel

- only scattering states found
- small energy shifts → small interaction
- we find no candidate for Z_c⁺(3900) in 1⁺⁻ channel

• Possible reasons:

♦ perhaps J^{PC}≠1^{+ -} (exp unknown)

♦ perhaps our interpolators (all of scat.
 type) are not diverse enough : calls for
 further simulations

 \diamond does the state really exist ?

Charmonium 0⁺⁺ resonance(s) above D<u>D</u> threshold

Interpolators : $J^{PC}=0^{++}(A_1^{++}), P=0, I=0$

 $O_{1-9}^{ar{c}c} = ar{c} \,\, \hat{M}_i \,\, c(0)$

$$O_{1}^{DD} = \bar{c}\gamma_{5}u(0) \ \bar{u}\gamma_{5}c(0) + \{u \to d\}$$

$$O_{2}^{DD} = \bar{c}\gamma_{5}\gamma_{t}u(0) \ \bar{u}\gamma_{5}\gamma_{t}c(0) + \{u \to d\}$$

$$O_{3}^{DD} = \sum_{e_{k}=\pm e_{x,y,z}} \bar{c}\gamma_{5}u(e_{k}) \ \bar{u}\gamma_{5}c(-e_{k}) + \{u \to d\}$$

$$O_1^{J/\psi \ \omega} = \sum_j \bar{c}\gamma_j c(0) \ [\bar{u}\gamma_j u(0) + \ \{u \to d\}]$$
$$O_2^{J/\psi \ \omega} = \sum_j \bar{c}\gamma_j \gamma_t c(0) \ [\bar{u}\gamma_j \gamma_t u(0) + \ \{u \to d\}]$$

Spectrum for $J^{PC}=0^{++}$, I=0

DD scattering in s-wave: PRELIMINARY

- δ from levels 2,3,4 in middle plot
- obviously not just one BW resonance
- there appears to be a narrow resonance between higher two points and we fit it with BW

 $\frac{p \cot \delta}{\sqrt{s}} = \frac{1}{g^2} (m^2 - s) \qquad \Gamma = g^2 \frac{p}{s}$

lat: $m - \frac{1}{4} [m_{\eta_c} + 3m_{J/\psi}] = 864 \pm 25 \text{ MeV}$ lat: $g = 0.94 \pm 0.23 \text{ GeV}$

predict : $m = 3932 \pm 25$ MeV predict : $\Gamma[R \rightarrow D\overline{D}] = 36 \pm 17$ MeV

- · using result on the left we predict where it would be expected in experiment
- experimental candidate for Xc0(2P) not commonly accepted
- \diamond recently PDG assigned X(3915) as Xc0(2P)
- ♦ serious objections to this: for example [Guo & Meissner, PRD86 (2012) 091501]
- the interaction does not seem to be negligible away from this narrow resonance:
- \diamond there seems to be sizable interaction near threshold

Conclusions & outlook

- Status of previous simulations:
- \diamond states well-below open-charm threshold well understood
- \diamond states near thresholds and above them not treated rigorously
- \diamond I presented an exploratory study in this direction for three channels:
- J^{PC}=1⁺⁺ & X(3872)
- ♦ I=1: we do not find candidate for X(3872): maybe due to $m_u = m_d$
- I=0: we find candidate for X(3872) to be 11 ± 7 MeV below th.
 Simulation on larger L will be needed for more reliable quantitative results
- J^{PC}=1⁺⁻, I=1 & Z_c⁺(3900)
- \diamond only scattering states found
- \diamond we do not find candidate for $Z_c^+(3900)$ in $J^{PC}=1^+$ channel
- \diamond future simulations using additional types of interpolators needed
- J^{PC}=0⁺⁺ , I=0
- \diamond indication for a narrow resonance and additional non-negligible int. near th.