η and η' Masses from Lattice QCD for the ETM collaboration

C. Michael¹, K. Ottnad², C. Urbach²

¹ Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool

² Helmholtz - Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn

Mainz, Lattice 2013

- nine lightest pseudo-scalar mesons show a peculiar spectrum:
 - 3 very light pions (140 MeV)
 - kaons and the η around 500 MeV
 - η' around 1 GeV

- the large mass of the η' meson is thought to be caused by the QCD vacuum structure and the U_A(1) anomaly
- η' meson is not a (would be) Goldstone Boson
- \Rightarrow massive even in the SU(3) chiral limit

- disconnected contributions significant
- ⇒ hard problem
 - chiral extrapolation difficult
- ⇒ no clear picture
 - need for improvement

filled symbols: η open: η'

[C. Michael, K. Ottnad, S. Reker, C.U., JHEP 1211 (2012) 048]

- 2 + 1 + 1 flavour gauge configurations from ETM Collaboration [ETMC, R. Baron et. al., JHEP 06 111 (2010)]
- Iwasaki Gauge action

[Iwasaki, Nucl. Phys. B258, 141]

- three lattice spacings (*A*, *B* and *D* ensembles): $a_A = 0.086 \text{ fm}, a_B = 0.078 \text{ fm} \text{ and } a_D = 0.061 \text{ fm}$
- charged pion masses range from $\approx 230~MeV$ to $\approx 500~MeV$
- $L \ge 3 \text{ fm}$ and $M_{\pi} \cdot L \ge 3.5$ for most ensembles
- ≈ 600 up to ≈ 2500 gauge configuration per ensemble
- bare *m_s* and *m_c* fixed for each lattice spacing
- use $r_0 = 0.45(2)$ fm (from f_{π}) throughout the talk

need to estimate correlator matrix

$$\mathcal{C} = egin{pmatrix} \eta_{\ell\ell} & \eta_{\ell s} & \eta_{\ell c} \ \eta_{s\ell} & \eta_{ss} & \eta_{sc} \ \eta_{c\ell} & \eta_{cs} & \eta_{cc} \end{pmatrix}$$

• η_{XY} correlator of appropriate interpolating fields, e.g.

$$\eta_{ss}(t) \equiv \langle \bar{s}i\gamma_5 s(t) \ \bar{s}i\gamma_5 s(0) \rangle$$

projected to zero momentum

- ⇒ diagonalise matrix: masses and pseudo-scalar matrix elements
 - η : lowest state, η' : first state, η_c ...

- ground state η well determined
- η^\prime signal lost in noise before plateau reached

make model assumption: disconnected contributions couple only to η and η' states, not to higher states

[Neff et al., Phys.Rev.D64 (2001)]

[K.Jansen, C.Michael, C.U., Eur.Phys.J.C58(2008)]

- replace connected contributions by only the ground states
- if model justified: there should be a plateau in the effective masses from very low times on!

• we see a plateau from t/a = 2 on

- for both η and η'
- η: good agreement with previous results
- η': possibly much better determination
- assumption justified?
- systematic uncertainties?

w/o removal

• we see a plateau from t/a = 2 on

- for both η and η'
- η: good agreement with previous results
- η': possibly much better determination
- assumption justified?
- systematic uncertainties?

w/ removal

Masses w/ and w/o Excited State Removal

• w/ removal: only two states left $\ensuremath{\mathcal{C}}$

 η :

- masses agree well
- improved precision
- η' :
 - masses determined much better
 - always agreement within 2σ
 - systematics hard to quantify
 - from distribution of differences: assign 7% systematic uncertainty

w/o removal

• w/ removal: only two states left $\ensuremath{\mathcal{C}}$

 η :

- masses agree well
- improved precision
- η' :
 - masses determined much better
 - always agreement within 2σ
 - systematics hard to quantify
 - from distribution of differences: assign 7% systematic uncertainty

Strange Quark Mass Dependence

- *m*_s not perfectly tuned to its physical value
- two re-tuned ensembles for a_A
- \Rightarrow can estimate m_s dependence
 - estimate

$$D_\eta \equiv rac{d(aM_\eta)^2}{d(aM_{
m K})^2} = 1.47(11)$$

now assume:

 D_{η} independent of $a, m_{\ell}, m_{s}, m_{c}$

...correct η masses

- use two ensembles sets (A60, B55, D45) (A40, B35, D30) with $r_0 M_{\rm PS} \approx {\rm const}$
- correct M_{η} using D_{η} linearly in $M_{\rm K}^2$ $\Rightarrow r_0 M_{\rm K} = 1.34$ fixed
 - compatible with both, constant and linear continuum extrapolation
- ⇒ assign 5% systematic error from maximal difference

Chiral Extrapolation of M_{η}

- more ambitious: shift all M_{η} to physical strange mass
- fit *c*₁, *c*₂

$$g_{\rm K} = c_1 + c_2 (r_0 M_{\rm PS})^2$$

to data for $(r_0 M_K)^2$ from A ensembles

- adjust c_1 to match physical $M_{\rm K}$ for $M_{
 m PS} = M_\pi \quad \Rightarrow \tilde{g}_{\rm K}$
- compute

$$\delta_{\rm K}[(r_0 M_{\rm PS})^2] = (r_0 M_{\rm K})^2 - \tilde{g}_{\rm K}[(r_0 M_{\rm PS})^2]$$

for all ensembles

• now correct all $(r_0 M_\eta)^2$ by corresponding

 $D_{\eta} \cdot \delta_{\mathrm{K}}[(r_0 M_{\mathrm{PS}})^2]$

- $\Rightarrow (r_0 \bar{M}_\eta)^2 \propto (r_0 M_{\rm PS})^2$
 - all *a*-values fall on the same curve!
 - extrapolate $(r_0 \overline{M}_{\eta})^2$ linearly in $(r_0 M_{\rm PS})^2$ to $M_{\rm PS} = M_{\pi}$
 - result

 $M_{\eta} = 552(10)_{\text{stat}} \text{ MeV}$

• similarly with $(\bar{M}_\eta/\bar{M}_{\rm K})^2$ or GMO relation

- no clear dependence on
 - lattice spacing
 - strange quark mass
- errors still significant
- include all data in extrapolation
- $(r_0 M_{\eta'})^2 \propto (r_0 M_{\rm PS})^2$
- \Rightarrow result

 $M_{\eta'} = 1005(54)_{\rm stat} \,\,{
m MeV}$

• fitting *A*, *B* and *D* seperately gives compatible results

- η and η' for three lattice spacings and various quark mass values
- presented excited state removal method
- η can be extracted precisely

 $M_{\eta} = 552(10)_{\rm stat}(28)_{\rm sys} {
m MeV}$

• η' from excited state removal

 $M_{\eta'} = 1005(54)_{\rm stat}(86)_{\rm sys} \; {
m MeV}$

 \rightarrow mixing: talk by Konstantin Ottnad

[HSC, J. J. Dudek et al., Phys. Rev. D83 (2011)] [RBC/UKQCD, N. Christ et al., Phys. Rev. Lett. 105 (2010)] [UKQCD, E. B. Gregory et al., Phys.Rev. D86 (2012)]

- computing time from
 - FZ Jülich on JUGENE and JUDGE
 - on local GPU cluster founded by DFG
 - LRZ Munich on Supermuc
- financial support from DFG in CRC 16
- supported by the Bonn-Cologne Graduate School (BCGS)
- thanks to all members of ETMC