η and η' Masses from Lattice QCD
for the ETM collaboration

C. Michael¹, K. Ottnad², C. Urbach²

¹ Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool
² Helmholtz - Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics, Universität Bonn

Mainz, Lattice 2013
nine lightest pseudo-scalar mesons show a peculiar spectrum:

- 3 very light pions (140 MeV)
- kaons and the η around 500 MeV
- η' around 1 GeV

the large mass of the η' meson is thought to be caused by the QCD vacuum structure and the $U_A(1)$ anomaly

η' meson is not a (would be) Goldstone Boson

\Rightarrow massive even in the SU(3) chiral limit
Noise in the η'

- η' mainly the flavour singlet
- disconnected contributions significant
 \Rightarrow hard problem
- chiral extrapolation difficult
 \Rightarrow no clear picture
- need for improvement

\[r_0 M_{\eta, \eta'} \]

Ensemble-Details

- $2 + 1 + 1$ flavour gauge configurations from ETM Collaboration
 [ETMC, R. Baron et. al., JHEP 06 111 (2010)]

- Iwasaki Gauge action
 [Iwasaki, Nucl. Phys. B258, 141]

- three lattice spacings (A, B and D ensembles):
 $a_A = 0.086$ fm, $a_B = 0.078$ fm and $a_D = 0.061$ fm

- charged pion masses range from ≈ 230 MeV to ≈ 500 MeV

- $L \geq 3$ fm and $M_\pi \cdot L \geq 3.5$ for most ensembles

- ≈ 600 up to ≈ 2500 gauge configuration per ensemble

- bare m_s and m_c fixed for each lattice spacing

- use $r_0 = 0.45(2)$ fm (from f_π) throughout the talk
Flavour Singlet Pseudo-Scalar Mesons

- need to estimate correlator matrix

\[
C = \begin{pmatrix}
\eta_{ll} & \eta_{ls} & \eta_{lc} \\
\eta_{sl} & \eta_{ss} & \eta_{sc} \\
\eta_{cl} & \eta_{cs} & \eta_{cc}
\end{pmatrix}
\]

- \(\eta_{XY}\) correlator of appropriate interpolating fields, e.g.

\[
\eta_{ss}(t) \equiv \langle \bar{s}i\gamma_5 s(t) \bar{s}i\gamma_5 s(0) \rangle
\]

projected to zero momentum

\(\Rightarrow\) diagonalise matrix:
masses and pseudo-scalar matrix elements

- \(\eta\): lowest state, \(\eta':\) first state, \(\eta_c\) ...
• ground state η well determined
• η' signal lost in noise before plateau reached
Improved η' Extraction

- **make model assumption:**
 disconnected contributions couple only to η and η' states, not to higher states

 [Neff et al., Phys.Rev.D64 (2001)]

- replace connected contributions by only the ground states

- if model justified:
 there should be a plateau in the effective masses from very low times on!

![Graph showing log of $C(t)$ vs. t/a](image-url)
Excited State Removal

- we see a plateau from $t/a = 2$ on
- for both η and η'
- η: good agreement with previous results
- η': possibly much better determination
- assumption justified?
- systematic uncertainties?

\[
M(t) = \log \frac{C(t+1)}{C(t)}
\]
Excited State Removal

- we see a plateau from $t/a = 2$ on
- for both η and η'
- η: good agreement with previous results
- η': possibly much better determination
- assumption justified?
- systematic uncertainties?
Masses w/ and w/o Excited State Removal

w/ removal: only two states left C

η:
- masses agree well
- improved precision

η':
- masses determined much better
- always agreement within 2σ
- systematics hard to quantify
- from distribution of differences: assign 7% systematic uncertainty
Masses w/ and w/o Excited State Removal

- w/ removal: only two states left C

η:
- masses agree well
- improved precision

η':
- masses determined much better
- always agreement within 2σ
- systematics hard to quantify
- from distribution of differences: assign 7% systematic uncertainty
Strange Quark Mass Dependence

- m_s not perfectly tuned to its physical value
- two re-tuned ensembles for a_A
 - can estimate m_s dependence
- estimate
 \[D_\eta \equiv \frac{d(aM_\eta)^2}{d(aM_K)^2} = 1.47(11) \]
- now assume:
 - D_η independent of a, m_ℓ, m_s, m_c
- ...correct η masses
Scaling Test for M_η

- use two ensembles sets
 $(A60, B55, D45)$
 $(A40, B35, D30)$
 with $r_0 M_{PS} \approx \text{const}$

- correct M_η using D_η linearly in M_K^2
 \[r_0 M_K = 1.34 \text{ fixed} \]

- compatible with both, constant and linear continuum extrapolation
 \[\Rightarrow \text{assign 5\% systematic error from maximal difference} \]
Chiral Extrapolation of M_η

- more ambitious: shift all M_η to physical strange mass
- fit c_1, c_2
 \[g_K = c_1 + c_2 (r_0 M_{PS})^2 \]

 to data for $(r_0 M_K)^2$ from A ensembles
- adjust c_1 to match physical M_K for $M_{PS} = M_\pi \Rightarrow \tilde{g}_K$
- compute
 \[\delta_K[(r_0 M_{PS})^2] = (r_0 M_K)^2 - \tilde{g}_K[(r_0 M_{PS})^2] \]

 for all ensembles
Chiral Extrapolation of M_η

- now correct all $(r_0 M_\eta)^2$ by corresponding

$$D_\eta \cdot \delta_K [(r_0 M_{PS})^2]$$

$$\Rightarrow (r_0 \bar{M}_\eta)^2 \propto (r_0 M_{PS})^2$$

- all a-values fall on the same curve!

- extrapolate $(r_0 \bar{M}_\eta)^2$ linearly in $(r_0 M_{PS})^2$ to $M_{PS} = M_\pi$

- result

$$M_\eta = 552(10)_{\text{stat}} \text{ MeV}$$

- similarly with $(\bar{M}_\eta / \bar{M}_K)^2$ or GMO relation
Chiral Extrapolation of $M_{\eta'}$

- no clear dependence on
 - lattice spacing
 - strange quark mass
- errors still significant
- include all data in extrapolation
- $(r_0 M_{\eta'})^2 \propto (r_0 M_{PS})^2$

⇒ result

$$M_{\eta'} = 1005(54)_{\text{stat}} \text{ MeV}$$

- fitting A, B and D seperately gives compatible results
• η and η' for three lattice spacings and various quark mass values

• presented excited state removal method

• η can be extracted precisely

$$M_{\eta} = 552(10)_{\text{stat}}(28)_{\text{sys}} \text{ MeV}$$

• η' from excited state removal

$$M_{\eta'} = 1005(54)_{\text{stat}}(86)_{\text{sys}} \text{ MeV}$$

→ mixing: talk by Konstantin Ottnad

Acknowledgements

- computing time from
 - FZ Jülich on JUGENE and JUDGE
 - on local GPU cluster founded by DFG
 - LRZ Munich on Supermuc

- financial support from DFG in CRC 16

- supported by the Bonn-Cologne Graduate School (BCGS)

- thanks to all members of ETMC