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Finite densities of heavy quarks

SU(N) gauge theories at finite densities of heavy quarks:

△ start: continuum quark determinant with µ

△ systematic expansion in 1/m (heat kernel expansion)
[Langfeld, Shin, Nucl.Phys. B572, 266 (2000) ]
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Finite densities of heavy quarks

SU(N) gauge theories at finite densities of heavy quarks:

△ start: continuum quark determinant with µ

△ systematic expansion in 1/m (heat kernel expansion)
[Langfeld, Shin, Nucl.Phys. B572, 266 (2000) ]

result for µ <∼ m:

S[U ] = Spure[U ] + f p[U ], p[u] :=
∑

~x P (~x)

P (~x): (traced) Polyakov line, f =
√
2π−3/2(mT )3/2a3 exp{(µ−m)/T}
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Finite densities of heavy quarks

SU(N) gauge theories at finite densities of heavy quarks:

△ start: continuum quark determinant with µ

△ systematic expansion in 1/m (heat kernel expansion)
[Langfeld, Shin, Nucl.Phys. B572, 266 (2000) ]

result for µ <∼ m:

S[U ] = Spure[U ] + f p[U ], p[u] :=
∑

~x P (~x)

P (~x): (traced) Polyakov line, f =
√
2π−3/2(mT )3/2a3 exp{(µ−m)/T}

“weak coupling” version of the Polyakov line spin model

No silver blaze problem!

small densities only [no saturation on the lattice]
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Finite densities of heavy quarks

Quantities of interest - effective potential

V (q) = T
V3

(j q − lnZ[J ] ) , q = d lnZ[j]
dj

= 〈p[U ]〉.

Z[j] =
∫

DUµ exp
{

Spure[U ] + j
∑

~x P (~x)
}
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Finite densities of heavy quarks

Quantities of interest - effective potential

V (q) = T
V3

(j q − lnZ[J ] ) , q = d lnZ[j]
dj

= 〈p[U ]〉.

Z[j] =
∫

DUµ exp
{

Spure[U ] + j
∑

~x P (~x)
}

Challenges:

△ poor statistics: 1 configuration ⇒ 1 p[U ]

△ poor signal-to-noise ratio: “j
∑

~x P (~x)” cancles “jq”

△ overlap problem!

△ SU(N > 2) (weak?) sign problem!
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The density-of-states method (LLR)

We need a numerical method to calculate Z[j] with

exponential error suppression

for a wide range of j !
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The LLR approach

What is the density of states? [my definition]

start with a partition function: Z =
∫

Dφ exp{βS[φ]}

β : coupling constant (QFT), inverse temperature (solid state physics)
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Define the density of
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The LLR approach

What is the density of states? [my definition]

start with a partition function: Z =
∫

Dφ exp{βS[φ]}

β : coupling constant (QFT), inverse temperature (solid state physics)

Define the density of

states ρ(E) by: ρ(E) =
∫

Dφ δ
(

E − S[φ]
)

What can we do with ρ(E) ?

Get the partition function for all β: Z =
∫

dE ρ(E) eβE

[scaling analysis in QFT]

Directly access the free energy
⇒ thermal energy density, pressure, latent heat (1st order transitions),

interface tensions, ...
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The LLR approach [µ = 0]

How do we calculate ρ(E) numerically?
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The LLR approach [µ = 0]

How do we calculate ρ(E) numerically?

Observation:

log ρ(E) is a remarkable smooth function of E!

example:

SU(2), 104 lattice:

Emax = 60, 000:

0 0.2 0.4 0.6 0.8 1
E/E

max

-120000

-100000

-80000

-60000

-40000

-20000

0

lo
g 10

ρ(
E

)

1000 energy intervals
5000 energy intervals

SU(2), 10
4
 lattice, preliminary
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The LLR approach

Choose a piecewiese linear ansatz:

ρ(E) = ρ(E0) exp
{

a(E0) (E − E0)
}

, E0 < E < E0 + δE

need to find the a(E0)!
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The LLR approach

Choose a piecewiese linear ansatz:

ρ(E) = ρ(E0) exp
{

a(E0) (E − E0)
}

, E0 < E < E0 + δE

need to find the a(E0)!

The LLR algorithm:

△ derive non-linear equation for a(E0)

△ uses MC expectation values (truncation + reweighting)

△ use Newton-Raphson to find a(E0)

[Langfeld, Lucini, Rago, Phys.Rev.Lett. 109 (2012) 111601]

Towards a density of states approach for dense matter systems – p. 7/18



The density of states - SU(3) versus SU(2)

Results for SU(3) versus SU(2):

0 0.2 0.4 0.6 0.8 1
E/E

max

-300000

-250000

-200000

-150000

-100000

-50000

0

lo
g 10

ρ(
E

)

SU(2)
SU(3)

SU(2) versus SU(3), 10
4
 lattice, preliminary
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The density of states - compact U(1)

study phase transition in U(1):

△ weakly first order

[ Arnold, Bunk, Lippert,

Schilling,

Nucl.Proc.Proc.Suppl.

119 (2003) 119]

△ Pβ(E) = ρ(E) exp{βE}

[Langfeld,Lucini,Pellegrini,Rago, in preparation]
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Solving sign-problems

Can we use the LLR method to calculate the Polyakov loop effective potential?
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The generalised LLR approach

The generalised density-of-states approach:

ρ(q) =
∫

DUµ exp{Spure[U ]} δ
(

q − p[U ]
)

number of states for a given Polyakov line
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The generalised LLR approach

The generalised density-of-states approach:

ρ(q) =
∫

DUµ exp{Spure[U ]} δ
(

q − p[U ]
)

number of states for a given Polyakov line

Recovering the generating functional:

Z[j] =
∫

dq ρ(q) exp{j q }.
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The generalised LLR approach

The generalised density-of-states approach:

ρ(q) =
∫

DUµ exp{Spure[U ]} δ
(

q − p[U ]
)

number of states for a given Polyakov line

Recovering the generating functional:

Z[j] =
∫

dq ρ(q) exp{j q }.

Use a piecewise linear ansatz:

ρ(q) = ρ(q0) exp
[

a(q0)(q − q0)
]

calculate a(q0) with the LLR method
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Results - Polyakov line effective potential

Polyakov line probability distribution:
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[Langfeld, Pawlowski,

Two-colour QCD with heavy

quarks at finite densities,

arXiv:1307.0455 [hep-lat]]
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Results - Polyakov line effective potential

Polyakov line probability distribution - finite temperatures
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Results - Polyakov line effective potential

Polyakov line expectation value - zero and finite T
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Results - Polyakov line effective potential

Coleman effective potential - zero and finite temperatures
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Results - Polyakov line effective potential

SU(2) “charmonium” - zero and finite temperatures
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Conclusions

studied SU(2) YM-theory at finite densities for heavy quarks

systematic 1/m expansion ⇒

“weak coupling” version of the Polyakov line spin model
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Conclusions
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Coleman effective potential:

need to solve an overlap problem

[poor signal-to-noise ratio due to large cancellation]
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Conclusions

studied SU(2) YM-theory at finite densities for heavy quarks

systematic 1/m expansion ⇒

“weak coupling” version of the Polyakov line spin model

Coleman effective potential:

need to solve an overlap problem

[poor signal-to-noise ratio due to large cancellation]

We might have a “first priciples” method to solve

overlap problems!

[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]
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Conclusions

Here:

△ Polyakov loop probability distribution over

80 orders of magnitude due to

exponential error suppression inherent to LLR method
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Conclusions

Here:

△ Polyakov loop probability distribution over

80 orders of magnitude due to

exponential error suppression inherent to LLR method

△ enough precision to calculate the

Coleman effective potential directly

Outlook: LLR approach not restricted to real actions!

will study of the O(2) model at finite densities

[has a dual theory that is real!]

[Langfeld, Phase diagram of the quantum O(2)-model in 2+1 dimensions,

PRD 87, 114504 (2013)]
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