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To introduce our approach, observe that strongly oscillating, low dimensional integrals are treated very effectively with the

Steepest Descent
of real part along γ

NOTE γ’ is not constant, but changes smoothly!
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Saddle-point integration

• It is a classic and elementary tool that works extremely well for low 
dimensional oscillating integrals.

• It is usually combined with an asymptotic expansion around the 
stationary point.

‣ But, that would correspond to some version of Perturbation Theory, 
which is not what we want.

• However, the idea of deforming the path is independent of the series 
expansion. And a path where the phase is stationary and the 
important contributions are more localized is very attractive from the 
point of view of the sign problem.

‣ What about a Monte Carlo integral along the curves of steepest 
descent (SD)?
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Higher dimensions

Under suitable conditions on f(x) and g(x), Morse theory (Pham ’83, Witten ‘10) tells 
us that for each cycle C, where the integral converges:

The generalization of the 
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For each stationary point pσ 
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E.g. The basis of 3 thimbles for the Airy integral.

Any domain of integration for 
the Airy integral corresponds to 
a combination of these three 
with integer coefficients.
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In principle yes:

...but computing the contribution from all the thimbles is probably not feasible.

But, including all the thimbles corresponds to reproduce the original integral exactly.

Is it necessary? No!
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• In general we have the freedom to choose a different regularization of a QFT, if it 
is available and convenient.

• Consider the global minimum of SR (e.g.φ=0), (which is a stationary point also of 

the complexified action, in the theories that we consider).  We will see that the 
thimble J0 associated to that point alone, defines a local QFT with the same 
degrees of freedom, the same symmetries and symmetry representations and 
also the same perturbative expansion as the original formulation.

• By universality (...), we expect that these properties essentially determine the 
behavior of physical quantities near a critical point (i.e. in the continuum limit), 
and hence the formulation in J0 seems an acceptable regularization of that QFT.

The path integral of a QFT?

→ regularize the QFT on that single J0 attached to the global min.
J0C =

X

�

n�J�
thimble attached to the 
global minimum of SR



When μ≠0, the action is not real, Re[exp[-S]] is not positive and we have a sign problem.

A complex scalar field with U(1) symmetry

S =

Z
d

4
x[|@�|2 + (m2 � µ

2)|�|2 + µj0 + �|�|4] j⌫ := �⇤ !@⌫ �

To be specific, let me discuss a simple model, 
which already contains most of the interesting aspects



Formulating the scalar fields on a thimble
Assume, that the original system has a single global minimum (φglob-min ),

(it can be extended to degenerate minima and SSB...)



Formulating the scalar fields on a thimble
Assume, that the original system has a single global minimum (φglob-min ),

(it can be extended to degenerate minima and SSB...)

φglob-min
x

�O� = ∫J0
∏

x,a

d�
a,x

e−S[�]O[�]∫J0
∏

a,x

d�
a,x

e−S[�]

then the expectation values are defined as:

d

d⌧

�

a,x

(⌧) = − �S[�(⌧)]
��

a,x

, ∀a, x,



Formulating the scalar fields on a thimble
Assume, that the original system has a single global minimum (φglob-min ),

(it can be extended to degenerate minima and SSB...)

An argument by Witten (2010) suggests that this thimble should give the dominant 
contribution, being the others vanishing or exponentially suppressed.

φglob-min
x

�O� = ∫J0
∏

x,a

d�
a,x

e−S[�]O[�]∫J0
∏

a,x

d�
a,x

e−S[�]

then the expectation values are defined as:

d

d⌧

�

a,x

(⌧) = − �S[�(⌧)]
��

a,x

, ∀a, x,



Formulating the scalar fields on a thimble
Assume, that the original system has a single global minimum (φglob-min ),

(it can be extended to degenerate minima and SSB...)

An argument by Witten (2010) suggests that this thimble should give the dominant 
contribution, being the others vanishing or exponentially suppressed.

Here I point out that this is also a legitimate regularization on the basis of 
universality. For this I need to consider 

φglob-min
x

�O� = ∫J0
∏

x,a

d�
a,x

e−S[�]O[�]∫J0
∏

a,x

d�
a,x

e−S[�]

then the expectation values are defined as:

d

d⌧

�

a,x

(⌧) = − �S[�(⌧)]
��

a,x

, ∀a, x,



Formulating the scalar fields on a thimble
Assume, that the original system has a single global minimum (φglob-min ),

(it can be extended to degenerate minima and SSB...)

An argument by Witten (2010) suggests that this thimble should give the dominant 
contribution, being the others vanishing or exponentially suppressed.

Here I point out that this is also a legitimate regularization on the basis of 
universality. For this I need to consider • the Symmetries 

• Perturbation Theory

φglob-min
x

�O� = ∫J0
∏

x,a

d�
a,x

e−S[�]O[�]∫J0
∏

a,x

d�
a,x

e−S[�]

then the expectation values are defined as:

d

d⌧

�

a,x

(⌧) = − �S[�(⌧)]
��

a,x

, ∀a, x,



U(1) Symmetry
One can prove that the thimble is invariant under U(1) if φglob-min is so.

Skipping details, the reason is the covariance of the SD equation:

d

d⌧

�

a,x

(⌧) = − �S[�(⌧)]
��

a,x

, ∀a, x,

What about symmetries? The only interesting one is the



U(1) Symmetry

�̂
x e↵�2 �̂

x

⇒ The symmetry transformations 
are well defined on the thimble.

⇒ This can be used to prove   
Ward Identities.

One can prove that the thimble is invariant under U(1) if φglob-min is so.

Skipping details, the reason is the covariance of the SD equation:

d

d⌧

�

a,x

(⌧) = − �S[�(⌧)]
��

a,x

, ∀a, x,

What about symmetries? The only interesting one is the



U(1) Symmetry

�̂
x e↵�2 �̂

x

⇒ The symmetry transformations 
are well defined on the thimble.

⇒ This can be used to prove   
Ward Identities.

One can prove that the thimble is invariant under U(1) if φglob-min is so.

Skipping details, the reason is the covariance of the SD equation:

d

d⌧

�

a,x

(⌧) = − �S[�(⌧)]
��

a,x

, ∀a, x,

What about symmetries? The only interesting one is the

GREAT!!



Perturbation Theory

dp

d�p

 Z

J0(�,µ)
d� e�S[�;�,µ]O�,µ[�]

!

|�=0

One might expect PT on the thimble to be very complicated...
Instead, it is not difficult to compare the PT of the two formulations.

Here there are more terms.



Perturbation Theory

dp

d�p

 Z

J0(�,µ)
d� e�S[�;�,µ]O�,µ[�]

!

|�=0

Z

J0(0,µ)
d�

dp

d�p |�=0

⇣
e�S[�;�,µ]O�,µ[�]

⌘

ordinary PT
It is a gaussian integral (...) performed along the 
path of steepest descent. This coincides with the 

original integral as long as the latter is convergent
(gaussian integrals have just one nontrivial class)

One might expect PT on the thimble to be very complicated...
Instead, it is not difficult to compare the PT of the two formulations.

Here there are more terms.



Perturbation Theory

dp

d�p

 Z

J0(�,µ)
d� e�S[�;�,µ]O�,µ[�]

!

|�=0

Z

J0(0,µ)
d�

dp

d�p |�=0

⇣
e�S[�;�,µ]O�,µ[�]

⌘

ordinary PT
It is a gaussian integral (...) performed along the 
path of steepest descent. This coincides with the 

original integral as long as the latter is convergent
(gaussian integrals have just one nontrivial class)

d

d� |�=0

"Z

J0(�,µ)
d� e�S[�;�=0,µ]O�=0,µ[�]P [�;µ]

#

0

The integral is constant under small variations of 
the path around the path of steepest descent.

One might expect PT on the thimble to be very complicated...
Instead, it is not difficult to compare the PT of the two formulations.

Here there are more terms.



Perturbation Theory

dp

d�p

 Z

J0(�,µ)
d� e�S[�;�,µ]O�,µ[�]

!

|�=0

Z

J0(0,µ)
d�

dp

d�p |�=0

⇣
e�S[�;�,µ]O�,µ[�]

⌘

ordinary PT
It is a gaussian integral (...) performed along the 
path of steepest descent. This coincides with the 

original integral as long as the latter is convergent
(gaussian integrals have just one nontrivial class)

d

d� |�=0

"Z

J0(�,µ)
d� e�S[�;�=0,µ]O�=0,µ[�]P [�;µ]

#

0

The integral is constant under small variations of 
the path around the path of steepest descent.

One might expect PT on the thimble to be very complicated...
Instead, it is not difficult to compare the PT of the two formulations.

Here there are more terms.

GREAT!!



Message #1

Designing regularizations that are better suited to deal 
with the sign problem is possible and should be pursued.



A Monte Carlo 
algorithm for a 

Lefschetz thimble?
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Bounded, real 
action: use MC.
E.g. Langevin algorithm

How can I stay in J0 ? Preserve J0 
by construction!

GREAT!

Need to be projected on 
the tangent space to J0

How can I compute the tangent space Tφ(J0) at φ?

(How do we know which neighbors will eventually fall in φ=0 under SD...?)

... looks impossible?!?
... But it is feasible in 5D !!

(Not Complex Langevin!)
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Projection on the tangent space

In fact, the tangent space at the 
stationary point φ =0 is easy to compute.

So, I can get tangent vectors at any 
point if I can transport a vector η 
along the grad. flow ∂SR,  so that it 
remains tangent to J0.   This amounts to 

require that: L@SR(⌘) = 0 , [@SR, ⌘] = 0

Which also leads to a simple prescription to compute η:
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Tφ=0(J0)

φ Tφ(J0)η

Projection on the tangent space

In fact, the tangent space at the 
stationary point φ =0 is easy to compute.

So, I can get tangent vectors at any 
point if I can transport a vector η 
along the grad. flow ∂SR,  so that it 
remains tangent to J0.   This amounts to 

require that: L@SR(⌘) = 0 , [@SR, ⌘] = 0

Which also leads to a simple prescription to compute η:

, d

d⌧
⌘j(⌧) =

X

k

⌘k(⌧)@k@jSR,

0 = [@SR, ⌘(⌧)]k =
X

j

@jSR@j⌘k(⌧)�
X

j

⌘j(⌧)@j@kSR

GREAT!!
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Graphical summary of a Langevin step

φ(t+dt,τ) 

φ(t,τ) 

φ=0

p
dtd

d⌧
�j(⌧) = �@jSR[�(⌧)],

✓(@2S(� = 0) · ⌘) = 0

Numerically 
stable?

Hopeless, if treated as an ODE with an initial value problem (IVP)
But can be made stable if formulated as a 5D BVP

d

d⌧
⌘j(⌧) =

X

k

⌘k(⌧)[@
2SR[�(⌧)]]k,j , stable (with 

Iwasawa proj.)
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Residual phase
As noticed at the beginning, there is still a phase
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e�SR[�]O[�]

det(Tφ)
(Tφ  is the tangent space to J0 in φ. )

But it should be computed and it is expensive.

Does it lead to a “sign problem” ? (which means <dΦ> ≈ e-V ) 
We cannot “prove” it does not, BUT:
• dΦ=1 at leading order and <dΦ> ≪ 1 are strongly suppressed by e-S ,

➡ There is strong correlation between phase and weight (precisely the lack of such 
correlation is the origin of the sign problem),

➡ In fact, such residual phase is completely neglected in the saddle point method.
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How precisely should we approximate the thimble?
We only need to ensure that:
1. The fluctuations in SI should not be so large to produce a sign 

problem. 
2.The homology class of the thimble should be preserved.

Equivalently: 
how long is the 5th dimension?

We don’t know in general, but see next talk.



What about 
QCD ?!?



Complexification

A

a
⌫(x) ! A

a,R
⌫ (x) + iA

a,I
⌫ (x) a = 1 . . . N2

c � 1.

SU(3)4V ! SL(3,C)4V



Covariant Derivatives

rR

x,⌫,a

, rI

x,⌫,a

, r
x,⌫,a

.and similar definitions for:

r
x,⌫,a

= rR

x,⌫,a

� irI

x,⌫,a

,

r
x,⌫,a

= rR

x,⌫,a

+ irI

x,⌫,a

Such that: And Cauchy-Riemann hold.

r
x,⌫,a

F [U ] :=
@

@↵

F

⇥
e

i↵Ta
U

⌫

(x)
⇤
|↵=0



Equations of Steepest Descent

d

d⌧

U

⌫

(x; ⌧) = (�iT

a

r
x,⌫,a

S[U ])U
⌫

(x; ⌧)

with covariant derivatives, they take the form:

d

d⌧
SR/I =

1

2

d

d⌧
(S ± S) = �1

2
rjS ·rjS ⌥ 1

2
rjS ·rjS =

⇢
� k rS k2

0

Note that this implies the following essential relations:



Defining the thimbles for gauge theories

How does the gauge invariance affects the construction of the thimble J0?
Discussed by Atiyah-Bott (1982) and reviewd by Witten (2010).

� Substitute the concept of non-degenerate critical point
with that of non-degenerate critical manifold (Bott 1956)



Gauge Symmetry of the thimble
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Note that the full SD equation is covariant only 
under the SU(3) subgroup of SL(3,�). ⇤(x)† = ⇤(x)�1

Proof of gauge invariance is now essentially identical 
to the proof of U(1) global symmetry for the scalar case.
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d
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S[U ])U
⌫
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Consider the SD equation:

(T
a
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x,⌫,a

S[U ]) !
�
⇤(x)�1

�†
(T

a

r
x,⌫,a

S[U ])⇤(x)†

Under gauge transformations it changes as:

U⌫(x) ! ⇤(x)U⌫(x)⇤(x+ ⌫̂)�1

Note that the full SD equation is covariant only 
under the SU(3) subgroup of SL(3,�). ⇤(x)† = ⇤(x)�1

Proof of gauge invariance is now essentially identical 
to the proof of U(1) global symmetry for the scalar case.

Note 1: This means that also Ward Identities are fulfilled.

Note 2: The gauge links are not in SU(3) ... Why should they be?



Perturbation Theory

dp

dgp

 Z

J0(g;µ)
dA e�S2[A]+gSint[A] det(Q[A = 0]) F [A; g, µ] Q[A = 0;µ]�1 . . . Q[A = 0;µ]�1

!

|g=0

We need to compute:

In this expression, the fermion field is integrated out. 

This leaves the determinant and the inverse fermion matrices (free propagators).

The integrand has the form of a gaussian times polynomials

Proof of equivalence is essentially identical to the scalar case.



Algorithm

Transport equation:

d

d⌧
⌘j(⌧) = ⌘j0(⌧)rj0rjSR,

Only few difference w.r.t. the scalar case.

Langevin Eq:

d

d⌧

U

⌫

(x; ⌧) = �iT

a

(r
x,⌫,a

S[U ] + ⌘

a,x,⌫

)U
⌫

(x; ⌧),
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Conclusions

• I have illustrated a new proposal to deal with the sign problem that 
afflicts a wide class of QFTs and statistical systems.

• It consists in regularizing the QFT on a Lefschetz thimble. Although it 
does not coincide with any traditional regularization, it is a legitimate one 
on the basis of universality. 

• I have also introduced a Monte Carlo algorithm to achieve an importance 
sampling of the configurations on the thimble. Its numerical 
implementation represents a wholly new challenge, but all the steps of 
the algorithm are, a priori, feasible and have acceptable scaling...

• Our first applications will be discussed in Marco’s talk.


