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I. INTRODUCTION

The leading-order hadronic (HLO) contribution to the anomalous magnetic moment aµ =
(g − 2)/2 of the muon is given by the integral [1, 2]1

aHLO
µ = 4α2

∫ ∞

0

dp2 f(p2)
(
Πem(0)− Πem(p2)

)
, (1.1)

f(p2) = m2
µp

2Z3(p2)
1− p2Z(p2)

1 +m2
µp

2Z2(p2)
,

Z(p2) =
(√

(p2)2 + 4m2
µp

2 − p2
)
/(2m2

µp
2) ,

where mµ is the muon mass, and for non-zero momenta Πem(p2) is defined from the hadronic
contribution to the electromagnetic vacuum polarization Πem

µν (p):

Πem
µν (p) =

(
p2δµν − pµpν

)
Πem(p2) (1.2)

in momentum space. Here p is the euclidean momentum flowing through the vacuum polar-
ization.

The integrand in Eq. (1.1) is dominated by momenta of order the muon mass; it typically
looks as shown in Fig. 1, with the peak located at p2 ≈ (mµ/2)

2. For a precision computation
of this integral using lattice QCD, one would therefore like to access the region of this peak.
In a finite volume with periodic boundary conditions, the smallest available non-vanishing
momentum is 2π/L, with L the linear size of the lattice volume. Setting 2π/L ≈ mµ/2 leads
to a value of L equal to about 25 fm, which is out of reach of present lattice computations,
if the lattice spacing a is chosen to be such that one is reasonably close to the continuum
limit. Clearly, a different method for reaching such small momenta is needed. In this article,
we discuss the use of twisted boundary conditions in order to vary momenta arbitrarily in a
finite volume.

Twisted boundary conditions have already been used before in order to access the con-
nected part of Πem(p2) at momenta smaller than 2π/L [4]. However, as we will show here,
any current used in the definition of Πem

µν (p) with twisted boundary conditions cannot be
conserved, and thus Πem

µν (p) is necessarily not purely transverse. In other words, in the pres-
ence of twisted boundary conditions, Πem

µν (p) cannot be written as in Eq. (1.2) above. The
relevant Ward–Takahashi identity (WTI) gets modified by twisting, leading to an extra term
proportional to δµν in the vacuum polarization. While this extra term is a finite-volume arti-
fact, it turns out to be quadratically divergent, and thus a potentially significant obstruction
to the extraction of Πem(p2) from Πem

µν (p).
This article is organized as follows. In Sec. II, we briefly review the application of twisted

boundary conditions to the computation of the vacuum polarization with arbitrary momen-
tum. Then, in Sec. III, we formulate the WTI, and demonstrate that this identity contains
a contact term originating from the fact that any current used in order to define the vacuum
polarization with non-zero twist is necessarily not conserved in a finite volume. This leads
to the appearance of non-transversal terms in the vacuum polarization, and in Sec. IV we

1 For an overview of lattice computations of the muon anomalous magnetic moment, see Ref. [3] and

references therein.
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FIG. 1: Typical shape of the integrand in Eq. (1.1), with p2 in GeV2 on the horizontal axis, and

arbitrary units on the vertical axis.

polarization with non-zero twist is necessarily not conserved in a finite volume. This leads
to the appearance of non-transversal terms in the vacuum polarization, and in Sec. IV we
show how these can be computed and subtracted, in order to allow the determination of
Πem(p2). In Sec. V we verify that indeed the WTI is satisfied numerically on a typical gauge
configuration, and we have a first look at the numerical size of the contact term relative to
the complete vacuum polarization. Section VI contains our conclusions, and an appendix
verifies the WTI to leading order in weak-coupling perturbation theory.

II. TWISTED BOUNDARY CONDITIONS

The aim is to compute the connected part of the two-point function of the electromagnetic
current,

Jem
µ (x) =

∑

i

Qiqi(x)γµqi(x) , (2.1)

in which i runs over quark flavors, and quark qi has charge Qie, in a finite volume, but with
an arbitrary choice of momentum. In order to do this, we will employ quarks which satisfy
twisted boundary conditions [5–7],

qt(x) = e−iθµ qt(x+ Lµ) , (2.2a)

qt(x) = qt(x+ Lµ) e
iθµ , (2.2b)

where the subscript t indicates that the quark field qt obeys twisted boundary conditions,
Lµ is the linear size of the volume in the µ direction, and θµ ∈ [0, 2π) is the twist angle in
that direction. For a plane wave u(p)eipx, boundary condition (2.2a) leads to the allowed
values

pµ =
2πnµ + θµ

Lµ

, nµ ∈ {0, 1, . . . , Lµ − 1} . (2.3)

The twist angle can be chosen differently for the two quark lines in the connected part
of the vacuum polarization, resulting in a continuously variable momentum flowing through
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the diagram.3 If this momentum is chosen to be of the form (2.3), then allowing θµ to
vary over the range between 0 and 2π allows pµ to vary continuously between 2πnµ/Lµ and
2π(nµ +1)/Lµ. This momentum is realized if, for example, we choose the anti-quark line in
the vacuum polarization to satisfy periodic boundary conditions (i.e., Eq. (2.2) with θµ = 0
for all µ), and the quark line twisted boundary conditions with twist angles θµ.

This choice can be viewed as following from the use of a mixed action [8]. The vacuum
polarization is made out of two different valence quarks: one with periodic boundary condi-
tions, and one with twisted boundary conditions, but otherwise equal to the periodic valence
quark. If the dynamical (sea) quarks are also periodic, the first valence quark is identical
to the sea quark, but the twisted quark is not present in the sea, i.e., it is quenched. In
a path-integral definition of the theory, one would thus introduce a ghost quark with the
same twisted boundary conditions in order to cancel the determinant for the twisted quark.
Denoting the twisted valence quark as qt, as in Eq. (2.2), and the periodic quark as q, the
connected vacuum polarization then is a linear combination of terms of the form4

〈J+
µ (x)J

−
ν (y)〉 = −〈tr γµSqt(x, y)γνSq(y, x)〉 , (2.4)

with

J+
µ (x) = q(x)γµqt(x) , (2.5)

J−
µ (x) = qt(x)γµq(x) ,

and where the trace is over Dirac and color indices. Sq(x, y) is the full propagator for
the periodic quark q and Sqt(x, y) is the full propagator for the twisted quark qt, equal to
exp(iθ(x − y)/L) times a periodic function of x and y with period Lµ in the µ direction.
(In a slight abuse of notation, the average on the right-hand side of Eq. (2.4) is only over
the gauge fields, while the average on the left is over both gauge and quark fields.) The
dependence of Eq. (2.4) on the twist angles θµ is a finite-volume effect, and goes away in the
limit Lµ → ∞, in which all momenta become continuous.

The use of twisted boundary conditions immediately carries over to the lattice, where,
of course, we need to specify a discretization of the quark action. In the following we will
choose to use naive lattice quarks, but the dicussion generalizes to any choice of lattice
quarks for which a conserved vector current can be defined. In particular, our discussion
applies directly to staggered quarks as well. The reason is that staggered quarks are nothing
else than naive quarks in a basis on which the gamma matrices are diagonal, but with
the resulting four-fold taste degeneracy removed. This diagonalization does not affect the
discussion of the currents (2.6) below: All one needs to do is replace the gamma matrices
γµ by the staggered phases ηµ(x), and drop the spin index on the quark fields.

For naive quarks with a nearest-neighbor Dirac operator, the currents (2.5) get replaced
by the point-split currents

j+µ (x) =
1

2

(
q(x)γµUµ(x)qt(x+ µ) + q(x+ µ)γµU

†
µ(x)qt(x)

)
, (2.6)

j−µ (x) =
1

2

(
qt(x)γµUµ(x)q(x+ µ) + qt(x+ µ)γµU

†
µ(x)q(x)

)
,

3 Clearly, this trick does not work for the disconnected part.
4 It is straightforward to generalize our analysis to the choice of arbitrary twist angles in both valence

quarks.
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Define quarks with twisted boundary     

 conditions:

Momenta are no longer restricted to 
integer multiples of 2π/L:

We define two currents (for naïve quarks; for 
staggered, just replace                    ).γµ → ηµ(x)



where Uµ(x) are the color gauge-field link variables.
In infinite volume, with conserved currents j±µ (x), the construction of a transverse vacuum

polarization Πµν(x − y) on the lattice is then standard, and its Fourier transform Πµν(p)
takes the form (1.2) because of current conservation,5 and one obtains Π(p2) by dividing
by p2δµν − pµpν (for non-zero p). However, in finite volume, the boundary conditions break
the symmetry that relates q and qt, and thus the currents j±µ (x) are not conserved for non-
vanishing θµ. We derive the corresponding modification of the relevant Ward–Takahashi
identity in the next section, and discuss the construction of Πµν(x − y) in the presence of
twisted boundary conditions.

III. WARD–TAKAHASHI IDENTITY

We consider the field transformations

δq(x) = iα+(x)e−iθx/Lqt(x) , δq(x) = −iα−(x)eiθx/Lqt(x) , (3.1)

δqt(x) = iα−(x)eiθx/Lq(x) , δqt(x) = −iα+(x)e−iθx/Lq(x) ,

in which we abbreviate
θx/L =

∑

µ

θµxµ/Lµ , (3.2)

and where α±(x) are periodic functions of x. The phases exp(±iθx/L) have been inserted
in order to ensure that the transformed quark fields obey the same boundary conditions as
the untransformed fields.

Following the standard procedure, this transformation leads to the WTI

∑

µ

∂−
µ

〈
j+µ (x)j

−
ν (y)

〉
+

1

2
δ(x− y)

〈
qt(y + ν)γνU

†
ν(y)qt(y)− q(y)γνUν(y)q(y + ν)

〉

−1

2
δ(x− ν − y)

〈
q(y + ν)γνU

†
ν(y)q(y)− qt(y)γνUν(y)qt(y + ν)

〉
= 0 , (3.3)

where ∂−
µ is the backward lattice derivative, which, in Eq. (3.3) as well as Eqs. (3.5) and (3.9)

below always acts on x:
∂−
µ f(x) = f(x)− f(x− µ) . (3.4)

If we would take θµ = 0 in all directions, the fields q and qt would be identical, and this
identity would simplify to

∑

µ

∂−
µ

(
〈
j+µ (x)j

−
ν (y)

〉
(3.5)

+
1

2
δµνδ(x− y)

〈
q(y + ν)γνU

†
ν(y)q(y)− q(y)γνUν(y)q(y + ν)

〉
)

= 0 .

5 We are ignoring order-a2 terms of the form δµν
∑

κ p
4
κ − p3µpν , (δµνp

2 − pµpν)p
2
ν , etc. For more discussion

of Lorentz-covariance violating terms, see for example Ref. [9].
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total derivative in the zero twist case.

We have a mixed-action theory, with periodic sea quarks and

twisted valence quarks (which are thus quenched, and we can

formally introduce ghosts to cancel the quark det).



The action is invariant under the isospin-like symmetry:

Following the standard procedure, we find that under this symmetry:



The quantity inside parentheses then defines Πµν(x−y), and its Fourier transform is defined
by

Πµν(x− y) =
1

V

∑

p

eip(x−y)+i(pµ−pν)/2 Πµν(p) , (3.6)

in which V =
∏

µ Lµ and p is summed over the momenta (2.3) with θµ = 0. In momentum

space, the WTI (3.5) then takes the form
∑

µ

p̂µΠµν(p) = 0 , p̂µ ≡ 2 sin (pµ/2) , (3.7)

from which the transverse form as in Eq. (1.2) follows (in the continuum limit). The neces-
sary presence of the contact term in Eq. (3.5) is standard on the lattice [10].

With twisted boundary conditions, a natural generalization of Eq. (3.5) is to define
Πµν(x − y) similarly, but averaging the contact term on the left-hand side of Eq. (3.5)
over the two quark fields q and qt, leading to the definition

Π+−
µν (x− y) =

〈
j+µ (x)j

−
ν (y)

〉
(3.8)

−1

4
δµνδ(x− y)

(〈
q(y)γνUν(y)q(y + ν)− q(y + ν)γνU

†
ν(y)q(y)

〉

+
〈
qt(y)γνUν(y)qt(y + ν)− qt(y + ν)γνU

†
ν(y)qt(y)

〉)
.

However, Π+−
µν (x− y) is not transverse, but instead obeys the identity

∑

µ

∂−
µ Π

+−
µν (x− y) +

1

4
(δ(x− y) + δ(x− ν − y)) 〈jtν(y)− jν(y)〉 = 0 , (3.9)

in which jν(x) and jtν(x) are currents defined by

jµ(x) =
1

2

(
q(x)γµUµ(x)q(x+ µ) + q(x+ µ)γµU

†
µ(x)q(x)

)
, (3.10)

jtµ(x) =
1

2

(
qt(x)γµUµ(x)qt(x+ µ) + qt(x+ µ)γµU

†
µ(x)qt(x)

)
.

It is important to note that other choices for Π+−
µν (x− y) are possible, but there will always

be a non-vanishing contact term in the WTI. The reason is that the contact term in Eq. (3.9)
(or, equivalently, in Eq. (3.3)) cannot be written as a derivative, because of the fact that q
and qt fields satisfy different boundary conditions breaks explicitly the isospin-like symmetry
that otherwise would exist. (For α± constant and θ = 0, Eq. (3.1) is an isospin-like symmetry
of the action. As a check, we see that for qt = q, i.e., for θ = 0, the contact term in Eq. (3.9)
vanishes.) The resulting non-transversal part of Π+−

µν therefore will need to be subtracted.
We discuss the properties of the contact term, as well as its subtraction, in the next section.

For completeness, we also give the corresponding WTI for the case that the local current

jν(y) = qt(y)γνq(y) (3.11)

is used instead of the current j−ν in the construction of the vacuum polarization. In that
case, the WTI reads

∑

µ

∂−
µ

〈
j+µ (x)jν(y)

〉
+ δ(x− y) 〈qt(y)γνqt(y)− q(y)γνq(y)〉 = 0 . (3.12)
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with

There are other definitions of Πµν possible, but the second term in 
some form will always exist (for this particular choice, it vanishes for 
zero twist).



The structure of this WTI is the same as that of Eq. (3.3): one obtains Eq. (3.12) from
Eq. (3.3) by omitting the link variables in the contact term, and setting ν = 0 in the
arguments of the fields and the delta function in Eq. (3.3). Again, no vacuum polarization
can be constructed that is purely transversal.

IV. SUBTRACTION OF CONTACT TERM

Because of axis-reversal symmetry 〈jν(y)〉 = 0 in Eq. (3.9),6 but this is not true for
〈jtν(y)〉, because twisted boundary conditions break this symmetry. Instead, we have that

〈jtν(y)〉 = −i
c

a2
θ̂ν

(
1 +O(θ̂2)

)
, (4.1)

θ̂µ = θµ/Lµ ,

where c is a numerical constant, and where we made the lattice spacing a explicit. This
expansion is valid when θ̂ is small compared to both 1/a and the quark mass m. Equa-
tion (4.1) follows from dimensional analyis and the fact that if we let θµ → −θµ under an
axis reversal in the µ direction, this axis reversal would be a symmetry of the theory. The
contact term in Eq. (3.9) is quadratically divergent (at fixed Lµ), and cannot be ignored.

The vacuum polarization Π+−
µν (x− y) defined in Eq. (3.8) can be written as

Π+−
µν (x− y) = eiaθ(x−y)/L F+−

µν (x− y) , (4.2)

where F+−
µν (x − y) is a periodic function of x − y with period Lµ in the µ direction. This

implies that the Fourier transform of Π+−
µν (x − y) is defined as in Eq. (3.6), but now with

the momentum p summed over the values (2.3). Let us decompose

Π+−
µν (p̂) =

(
p̂2δµν − p̂µp̂ν

)
Π+−(p̂2) +

δµν
a2

Xν(p̂) , (4.3)

in which a quadratically divergent term Xν(p̂) has been added to the transversal part, in
order to accommodate the explicit breaking term in the WTI (3.9). In momentum space,
Eq. (3.9) takes the form

i
∑

µ

p̂µΠ
+−
µν (p̂) = − cos (apν/2)〈jtν(0)〉 (4.4)

=
i

a2
p̂νXν(p̂) ,

where in the second line we substituted Eq. (4.3). In the appendix, we verify Eqs. (4.4)
and (4.1) to one loop. Using Eq. (4.1), we find

Xν(p̂) =
i

2
cot (apν/2) a

3〈jtν(0)〉 (4.5)

=
1

2
c cot (apν/2) aθ̂ν

(
1 +O(θ̂2)

)
.

6 Recall that we assume dynamical quarks to have periodic, and not twisted, boundary conditions.
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We can decompose this tensor as

p̂µ =
2

a
sin

(apµ
2

)

i
∑

µ

p̂µΠ
+−
µν (p̂) = − cos(apν/2)〈jtν(0)〉 = i

p̂ν
a2

Xν(p̂)

so we extract X from the twisted 
current:

Subtraction of contact term

We can see from dimensional 
analysis and axis reversal symmetry:

Pole in X only when πnν + θν/2 = kπLν/a



Perturbation Theory (one-loop)

lattice and finite-volume artifacts that should automatically disappear in the continuum
and infinite-volume limits. Without the removal of the quadratically divergent term this
would not the case. Of course, while the quadratically divergent nature of the contact term
tends to increase the importance of this effect at smaller lattice spacing, the fact that it is
a finite-volume effect will help suppress the effect on larger volumes. It thus remains to be
seen how numerically significant the effect is in practice on realistic lattices with a given
lattice spacing.
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Appendix A: Vacuum polarization at one loop

In this Appendix, we verify the WTI and the occurence of the quadratic divergence in
Πµν(x − y) at one loop. We set a = 1 again. At one loop, the vacuum polarization of
Eq. (3.8) is just that in the theory of free quarks, and, using the Feynman rules for naive
fermions, we find

Π+−
µν (p) = −Nc

V

∑

k

tr

[
γµ

cos (kµ + pµ/2)

i
∑

κ γκ sin(kκ + pκ) +m
γν

cos (kν + pν/2)

i
∑

λ γλ sin kκ +m

]
(A1)

+
i

2
δµν

Nc

V

∑

k

tr

[
γν

(
sin kν

i
∑

κ γκ sin kκ +m
+

sin (kν + θ̂ν)

i
∑

κ γκ sin (kκ + θ̂κ) +m

)]
,

in which p is one of the momenta specified in Eq. (2.3), and k is summed over periodic
momenta, with components kµ = 2πnµ/Lµ with nµ ∈ {0, . . . , Lµ − 1}; Nc is the number of
colors.

Using trigonometric identities, it is straightforward to show that

i
∑

µ

p̂µΠ
+−
µν (p) = (A2)

−2i cos (pν/2)
Nc

V

∑

k

(
sin(2kν)∑

κ sin
2 kκ +m2

− sin(2(kν + θ̂ν))∑
κ sin

2 (kκ + θ̂k) +m2

)

= 2i cos (pν/2) θ̂

[
Nc

V

∑

k

(
2 cos(2kν)∑
k sin

2 kκ +m2
− sin2(2kν)

(
∑

k sin
2 kκ +m2)2

)]
+O(θ̂3) .

The quantity in square brackets on the last line is quadratically divergent in the continuum
limit, and leads to a one-loop result for 〈jtν(y)〉 of the general form (4.1). In manipulating
the sums over k, one should keep in mind that only shifts by periodic momenta are allowed.
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For realistic lattices the effect can be small; 
the free theory result gives:

V = 483 × 144, am = 0.0036, θi = 0.28π

〈jtν(0)〉 ≈ 7.30× 10−5i
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FIG. 2: Ratio of the left-hand and right-hand sides of the WTI (4.4), for a typical gauge-field

configuration from the asqtad MILC ensemble with L3 × T = 483 × 144, 1/a = 3.35 GeV, am =

0.0036, θx = θy = θz = 0.28π, θt = 0.

with choices for the momentum p̂ such that the denominator does not vanish. Here Π+−
µν (p̂)

was obtained as the Fourier transform of Π+−
µν (x), taking y = 0 in Eq. (3.8), and Xν(p̂) was

obtained from Eq. (4.5), with again 〈jtν(0)〉 replaced by 〈jtν(0)− jν(0)〉.
In Fig. 3 we see that for some momenta (especially in the low-momentum region) the size

of the counter term in Eq. (4.3) can be significant. We also find that averaging (over volume
or over configurations) appears to reduce the effect of the counter term. While the effect of
averaging is at present still under investigation, the result shown in the figure indicates that
at least on single configurations the effect of the counter term cannot be ignored.

VI. CONCLUSION

In this article, we investigated the use of twisted boundary conditions in a finite volume,
in order to compute the hadronic vacuum polarization on a lattice for all values of the
euclidean momenta, instead of only those allowed with periodic boundary conditions. As
we explained in the Introduction, this is important for a high-precision computation of the
leading-order hadronic contribution to the muon anomalous magnetic moment.

9

A single gauge configuration, with the vacuum 
polarization evaluated exactly (CG res = 10-8)

V = 483 × 144, am = 0.0036, θi = 0.28π

While our full calculation uses all-mode averaging 
to reduce statistical errors [Blum, Izubuchi, 
Shintani, arXiv:1208.4349], this is just the “exact” 
part.
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tion (4.1) follows from dimensional analyis and the fact that if we let θµ → −θµ under an
axis reversal in the µ direction, this axis reversal would be a symmetry of the theory. The
contact term in Eq. (3.9) is quadratically divergent (at fixed Lµ), and cannot be ignored.

The vacuum polarization Π+−
µν (x− y) defined in Eq. (3.8) can be written as

Π+−
µν (x− y) = eiaθ(x−y)/L F+−

µν (x− y) , (4.2)

where F+−
µν (x − y) is a periodic function of x − y with period Lµ in the µ direction. This

implies that the Fourier transform of Π+−
µν (x − y) is defined as in Eq. (3.6), but now with

the momentum p summed over the values (2.3). Let us decompose

Π+−
µν (p̂) =

(
p̂2δµν − p̂µp̂ν

)
Π+−(p̂2) +

δµν
a2

Xν(p̂) , (4.3)

in which a quadratically divergent term Xν(p̂) has been added to the transversal part, in
order to accommodate the explicit breaking term in the WTI (3.9). In momentum space,
Eq. (3.9) takes the form

i
∑

µ

p̂µΠ
+−
µν (p̂) = − cos (apν/2)〈jtν(0)〉 (4.4)

=
i

a2
p̂νXν(p̂) ,

where in the second line we substituted Eq. (4.3). In the appendix, we verify Eqs. (4.4)
and (4.1) to one loop. Using Eq. (4.1), we find

Xν(p̂) =
i

2
cot (apν/2) a

3〈jtν(0)〉 (4.5)

=
1

2
c cot (apν/2) aθ̂ν

(
1 +O(θ̂2)

)
.

6 Recall that we assume dynamical quarks to have periodic, and not twisted, boundary conditions.
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FIG. 3: Ratio of the second term on the right-hand side and the left-hand side of Eq. (4.3), for the

same gauge-field configuration as used for Fig. 2.

In order to vary the momentum flowing through the vacuum polarization, the quark and
anti-quark lines constituting the connected contribution to the vacuum polarization should
obey boundary conditions with different twist angles.9 This implies that the isospin-like
symmetry relating these two quark lines is broken explicitly. This breaking shows up as an
extra contact term in the relevant Ward–Takahashi identity that cannot be removed by a
local redefinition of the currents, and which we showed to be quadratically divergent. Corre-
spondingly, the vacuum polarization is not transversal, but instead contains a quadratically
divergent term which needs to be subtracted. We emphasize that this extra term is a finite-
volume artifact caused by the use of twisted boundary conditions. A consequence of this
is that the point-split currents considered in this article still do not renormalize, so that
no Z factors appear if the currents j±µ of Eq. (2.6) are used in order to define the vacuum

polarization.10

The analysis leading to this conclusion also leads to a recipe for removing the unwanted
term from the vacuum polarization, as discussed in Sec. IV. The subtracted vacuum po-
larization is still not exactly of the desired form (1.2), but the remaining violations are

9 As mentioned before, this method therefore does not apply to the disconnected part.
10 As usual, a non-trivial Z factor appears if the local current jµ of Eq. (3.11) is used.
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Xν(p̂)

a2Π+−
νν (p̂)

Another check – for small momentum X(p) 
can be very large on a single configuration.



Same configuration as before (and still just the 
“exact” term).



Averaging over configurations, we find large 
cancellations so the overall effect is extremely 
small.



Recall: Even small effects at low momentum can 
make a significant impact on the extracted 
value of g-2.




Numerical Checks



Conclusions

When using twisted boundary conditions, a new term arises in the expression 
for the vacuum polarization.





While the term may be negligible after averaging over gaugefield configurations, 
it can be extremely large on a single configuration – recall it is quadratically 
divergent!





To ensure minimizing uncertainties, which is crucial in extracting the muon g-2, 
it is straightforward to subtract this contamination.


