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Hadronic vacuum polarization from the 4D
Fouriertransform of the vector correlator

I On a Euclidean lattice the vacuum polarization tensor can be
defined as the four dimensional Fouriertransform of the vector
current-current correlation function

Πµν(Q) ≡
∫

d4x e iQ·x〈jµ(x)jν(0)〉

I The tensor structure implies

Πµν(Q) =
(
QµQν − δµνQ2

)
Π(Q2)

I The vacuum polarisation Π(Q2) can be computed from the
lattice determined Πµν(Q)

I Caveat: Only a limited number of Q2
latt. is available

⇒ Can be boosted by ”twisted boundary conditions”



Anomalous magnetic moment of the muon aHLOµ

I Lowest order hadronic contribution to the anomalous magnetic
moment of the muon aHLOµ is obtained by integrating

aHLO
µ =

(α
π

)2 ∫
dQ2KE (Q2,mµ)Π̂(Q2)

I here, the hadronic part Π̂(Q2) = 4π2(Π(Q2)− Π(0)) can be
determined by taking the limit limQ2→0 Π(Q2)

I and the kernel given by QED is

KE (Q2,mµ) =
m2
µQ

2Z 3(1− Q2Z )

1 + m2
µQ

2Z 2
, Z =

Q2 −
√
Q4 − 4m2

µQ
2

2m2
µQ

2



Example: Recent numerical results for Π(Q2) on F6

I For Π̂(Q2) the point Π(0) has to be obtained from a fit



Newest numerical results for aHLO
µ in Nf = 2
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I aHLO
µ can be determined and chirally extrapolated

I χPT inspired fit: A + B m2
π + C m2

π ln(m2
π)



Recap of the ”standard method”

I Π(Q2) is extracted from the 4D Fourier transformation of the
vector correlation function

Πµν(Q) ≡
∫

d4x e iQ·x〈jµ(x)jν(0)〉 =
(
QµQν − δµνQ2

)
Π(Q2)

I The limit limQ2→0 Π(Q2) is estimated to obtain

Π̂(Q2) = 4π2(Π(Q2)− Π(0))

I Π̂(Q2) is used to determine aHLOµ , through

aHLO
µ =

(α
π

)2 ∫
dQ2KE (Q2,mµ)Π̂(Q2)



Obtaining Π̂(Q2
0 ) from the time-momentum vector

correlator

I The tructure of the vacuum polarization tensor implies:

Πµν(Q) =
(
QµQν − δµνQ2

)
Π(Q2)

⇒ Πzz(Q0) = −Q2
0Π(Q2

0 ) whereby: Q0 = Q(ω, ~k = 0)

I The time-momentum representation of the vector correlation
function is given by:

G (x0, ~k) =

∫
x
d3x e i

~k~x〈Jµ(x0, ~x)Jν(0)〉

I Therefore Π(Q2
0 ) can be rewritten in terms of the

mixed-representation correlator as:

Π(Q2
0 ) = −Πzz(Q0)

Q2
0

=
1

Q2
0

∫ ∞
−∞

dx0e
iQ0x0G (x0, ~k = 0)



Obtaining Π̂(Q2
0 ) from the time-momentum vector

correlator

I To obtain Π̂(Q2
0 ) = 4π2(Π(Q2

0 )− Π(0)) expand:

Π(Q2
0 → 0) =

1

Q2
0

∫ ∞
−∞

dx0 G (x0)

− 1

2

∫ ∞
−∞

dx0 x
2
0 G (x0) +O(Q2

0 )...

I The vacuum polarization can be expressed as an integral over
the current-current correlator G (x0):

Π(Q2
0 )− Π(0) =

∫ ∞
0

dx0G (x0)
[
x20 −

4

Q2
0

sin2(
1

2
Q0x0)

]



Vacuum polarization from the mixed representation vector
correlator

I There is no extrapolation to Q2
0 = 0 needed to obtain Π̂(Q2

0 )

I There is no limitation to a finite number of lattice momenta

I Also the Adler function can be computed directly:

D(Q2
0 ) ≡ 12π2Q2

0

d Π

dQ2
0

=
12π2

Q2
0

∫ ∞
0

dx0 G (x0)

(2− 2 cos(Q0x0)− Q0x0 sin(Q0x0))

I The slope of the Adler function at the origin is

D ′(0) = lim
Q2→0

D(Q2)

Q2
= π2

∫ ∞
0

dx0 x
4
0 G (x0)

⇒ lim
ml→0

aHLO
l

ml
=

1

9

(α
π

)2
D ′(0)



Numerical Setup

I F6 ensemble: 96× 483, a = 0.0631fm at mπ = 324MeV

I Local-conserved isovector vector correlation function:

G (x0) = ZV (g0)Gbare(x0, g0)δkl = −a3ZV (g0)
∑
~x

〈Jck (x)J l`(0)〉,

where J lµ(x) = q̄(x)γµq(x)

Jcµ(x) =
1

2

(
q̄(x + aµ̂)(1 + γµ)U†µ(x)q(x)

− q̄(x)(1− γµ)Uµ(x)q(x + aµ̂)
)

I To extrapolate to x0 →∞ use Ansatz:

GAnsatz(x0) =
2∑

n=1

|An|2e−mnx0



Lattice isovector vector correlation functions

I The smeared-smeared correlator is used to fit the lowest lying
mass for extrapolation to all time beyond x0 ' T/4.



Integrand for computing the slope dΠ̂(Q2)/dQ2

I Different cuts lead to negligible effects in the result on
dΠ̂(Q2)/dQ2 and also Π̂(Q2).



Lattice results: Π̂(Q2) and dΠ̂(Q2)/dQ2



Lattice results: Π̂(Q2) and Adler function

I Note: Horizontal axis rescaled by the vector meson mass



Lattice results: Π̂(Q2) and Adler function

I Lattice results low compared to phenomenological model†

⇒ Due to spectral density below and around ρ mass?

†: Eq. (93) of Eur.Phys.J. A47, 148(2011).



On the role of disconnected diagrams

I In (isospin-symmetric) two-flavor lattice QCD correlation
functions can written in terms of Wick-connected and
Wick-disconnected diagrams

I So far we have concentrated on the isovector channel:

Πρρ
µν(Q) =

∫
d4x e iQ·x〈jµ(x)jν(0)〉 =

1

2
Πwick−conn.
µν (Q)

⇒ it contains only connected diagrams

I The electromagnetic current however is

Πγγ
µν(Q) = Πρρ

µν(Q) +
1

9
Πωω
µν (Q)

where: Πωω
µν (Q) = 1

2ΠWick−conn.
µν (Q) + ΠWick−disconn.

µν (Q)



On the role of disconnected diagrams

I Both Πwick−conn.
µν (Q) and Πwick−disconn.

µν (Q) can be linked to a
spectral function via πρ(s) = −ImΠ(Q2)

I The spectral function ρ(s) is related to the experimentally
accessible R(s) ∼ σ(e+e− → µ+µ−) ratio, some implications
are:

I Isovector: ρρρ(
√
s < 2mπ) = 0

I Isosinglett: ρωω(
√
s < 3mπ) = 0

I In terms of Wick-contractions this implies for
√
s < 3mπ

ρWick−disconn.(s) = −1

2
ρWick−conn.(s)

I Therefore in the electromagnetic current at 2mπ <
√
s < 3mπ

1
9ρ

Wick−disconn.(s)
5
9ρ

Wick−conn.(s)
= − 1

10



On the role of disconnected diagrams

I The result ρWick−disconn.(s) = −1
2ρ

Wick−conn.(s) can be
translated into a Euclidean correlator using:

G (x0) =

∫ ∞
0

d
√
s s ρ(s) e−

√
s|x0|

I The correlator at long distances is dominated by the
low-energy part of the spf. For x0 →∞ it follows:

GWick−disconn.(x0) = −1

2
GWick−conn.(x0)

[
1 +O(e−mπx0)

]



Overview

I We implemented a new representation of the hadronic
vacuum polarization, that

I does not require an extrapolation Q2 → 0
I is not limited to a finite number of lattice momenta
I enables the direct computation also of the Adler function and

the slope of Π̂(Q2)

I We independently rederived a recent theoretical estimate of
the Wick-disconnected diagram contributions
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