A determination of the average up-down, strange and charm quark masses at $N_f = 2 + 1 + 1$

Paolo Lami (ETM Collaboration)

Roma Tre University, INFN Roma Tre

Lattice 2013, Mainz

August 2, 2013

Quark masses at $N_f = 2 + 1 + 1$

1 / 19

Outline

- Simulation details
- Plateaux
- $m_{u/d}, m_s, m_s/m_{u/d}, m_u/m_d$
- $m_c, m_c/m_s$
- Summary of the results

Simulation details

- Twisted Mass action at maximal twist at $N_f = 2 + 1 + 1$
- Osterwalder-Seiler valence quark action
- Iwasaki gluonic action

PRA027 "QCD simulations for flavor physics in the Standard Model and beyond" (35 milions of core-hours at the BG/P system in Julich from December 2010 to March 2011)

- Three values of the lattice spacing (approximately 0.06 fm, 0.08 fm and 0.09 fm).
- Pion masses in the range 210 440 MeV.

August 2, 2013

3 / 19

Simulation details (2)

β	V	$a\mu_{sea}$	N_{cfq}	$a\mu_s$	$a\mu_c$
1.90	$32^3 \times 64$	0.0030	150	0.0145, 0.0185,	0.1800, 0.2200,
		0.0040	90	0.0225	0.2600, 0.3000,
		0.0050	150		0.3600, 0.4400
	$24^{3} \times 48$	0.0040	150	1	
		0.0060	150		
		0.0080	150		
		0.0100	150		
1.95	$32^3 \times 64$	0.0025	150	0.0141, 0.0180,	0.1750, 0.2140,
		0.0035	150	0.0219	0.2530, 0.2920,
		0.0055	150		0.3510, 0.4290
		0.0075	75		
	$24^{3} \times 48$	0.0085	150	1	
2.10	$48^3 \times 96$	0.0015	60	0.0118, 0.0151,	0.1470, 0.1795,
		0.0020	90	0.0184	0.2120, 0.2450,
		0.0030	90		0.2945, 0.3595

β	$Z_P^{\overline{MS}}(2 \text{ GeV})(M_1)$	$Z_P^{\overline{MS}}(2 \text{ GeV})(M_2)$	r_0/a	a(fm)
1.90	0.521(7)	0.564(6)	5.31(8)	0.0885(36)
1.95	0.506(4)	0.537(4)	5.77(6)	0.0815(30)
2.10	0.513(3)	0.540(2)	7.60(8)	0.0619(18)

β	L(fm)	$M_{\pi}(\text{MeV})$	$M_{\pi}L$
1.90	2.84	245.41	3.53
		282.13	4.06
		314.43	4.53
1.90	2.13	282.13	3.05
		343.68	3.71
		396.04	4.27
		442.99	4.78
1.95	2.61	238.67	3.16
		280.95	3.72
		350.12	4.64
		408.13	5.41
1.95	1.96	434.63	4.32
2.10	2.97	211.18	3.19
		242.80	3.66
		295.55	4.46

- E

・ロト ・四ト ・ヨト ・ヨト

Plateaux in m_{eff} as a function of time

M_{π}^2 and M_K^2 analysis

Analysis of the dependence of M_{π}^2 and M_K^2 on m_l and a^2

• Discretization effects: data in units of either r_0 or $M_{\langle ss \rangle}$

 $M_{\langle ss\rangle} :$ meson mass corresponding to a reference strange quark with mass near its physical value.

- Extrapolation to the physical point: $SU(2) \chi PT$ fit and polynomial fit.
- Finite Size Effects: evaluated with CWW (SU(2)) formulas ¹ for pions and CDH (SU(3)) formulas ² for kaons (see L. Riggio's talk).

¹G. Colangelo,U. Wenger, J.M.S. Wu: arXiv:1003.0847 [hep-lat]

Example of π analysis - Chiral fit in units of r_0

Scale setting done with $f_{\pi^+} = 130.41 \,\mathrm{MeV}$

$$(\mathcal{M}_{\pi}r_{0})^{2} = 2(B_{0}r_{0})(m_{l}r_{0})\left(1 + \xi_{l}log(\xi_{l}) + P_{3}\xi_{l} + P_{4}\frac{a^{2}}{r_{0}^{2}} + \frac{4C_{2}}{(4\pi f_{0})^{2}}\frac{a^{2}}{r_{0}^{2}}log(\xi_{l})\right)K_{M}^{FSE}$$

$$f_{\pi}r_{0} = f_{0} \left(1 - 2\xi_{l}log(\xi_{l}) + P_{6}\xi_{l} + P_{7}\frac{a^{2}}{r_{0}^{2}} - \frac{4C_{2}}{(4\pi f_{0})^{2}}\frac{a^{2}}{r_{0}^{2}}log(\xi_{l}) \right) K_{f}^{FSE} \qquad \xi_{l} = \frac{2B_{0}m_{l}}{(4\pi f_{0})^{2}}$$

Comparing Chiral and Polynomial analyses

• Chiral fit $(M_{\pi}r_0)^2 = 2(B_0r_0)(m_lr_0) \left(1 + \xi_l log(\xi_l) + P_3\xi_l + P_4\frac{a^2}{r_0^2} + \frac{4C_2}{(4\pi f_0)^2}\frac{a^2}{r_0^2}log(\xi_l)\right) K_M^{FSE}$

• Polynomial fit $(M_{\pi}r_0)^2 = 2(B_0r_0)(m_lr_0)\left(1 + P_3\xi_l + P_4\frac{a^2}{r_0^2} + P_5\xi_l^2\right)K_M^{FSE}$

 $m_{u/d}(2 \,\text{GeV}) = 3.70(17) \,\text{MeV}$

more in detail

 $m_{u/d}(2 \,\text{GeV}) = 3.70(13)_{stat+fit}(6)_{chir}(5)_{disc}(5)_{Z_P}(4)_{FSE} \,\text{MeV}$

Systematic errors are estimated from the spread between different analyses:

- $()_{stat+fit}$: includes statystical error and the uncertainty induced by the fitting procedure.
- ()_{chir}: SU(2) ChPT or polynomial fit.
- ()_{disc}: analysis in units of r_0 or $M_{\langle ss \rangle}$.
- () $_{Z_P}$: different methods in calculating RI-MOM renormalization constants Z_P .
- ()_{FSE}: CWW corrections or no corrections.

9 / 19

M_K^2 : Chiral fit (in units of r_0)

According to SU(2) ChPT there is no chiral log at NLO in M_K^2

$$(M_K r_0)^2 = P_1(m_l r_0 + m_s r_0) \left(1 + P_2 \xi_l + P_3 \frac{a^2}{r_0^2}\right) K_M^{FSE}$$

10 / 19

All M_K^2 data interpolated to m_s so that we obtain M_K^{exp} at a = 0 and $m_{u/d}$.

$$(M_K^{exp})^2 = \frac{M_{K^+}^2 + M_{K^0}^2}{2} - \frac{(1+\epsilon)}{2} (M_{\pi^+}^2 - M_{\pi^0}^2) \simeq (494.4 \,\mathrm{MeV})^2 \qquad \epsilon \simeq 0.7$$

Paolo Lami (ETMC)

Comparing r_0 and $M_{\langle ss \rangle}$ units

• units of r_0 : 9% discretization effects

units of M_(ss): 0.4% discretization effects
 But they are large in the continuum extrapolation of M_(ss)

August 2, 2013

 $m_s(2 \,\text{GeV}) = 99.2(4.0) \,\text{MeV}$

 $m_s(2 \text{ GeV}) = 99.2(3.4)_{stat+fit}(0.6)_{chir}(1.1)_{disc}(1.5)_{Z_P}(0.5)_{FSE} \text{ MeV}$

Systematic errors are estimated from the spread between different analyses:

- $()_{stat+fit}$: includes statystical error and the uncertainty induced by the fitting procedure.
- ()_{chir}: SU(2) ChPT or polynomial (up to $O(m_l^3)$) fit. Each fit uses the respective scale set by the Pion analysis.
- ()_{disc}: analysis in units of r_0 or $M_{\langle ss \rangle}$.
- () $_{Z_P}$: different methods in calculating RI-MOM renormalization constants Z_P .
- () $_{FSE}$:CDH corrections or no corrections.

 $m_s/m_{u/d}$ and m_u/m_d

By analyzing M_K^2 we also obtain

Indirect determination from m_s and $m_{u/d}$ $m_s/m_{u/d} = 27.0(1.3)$

From $M_{K^0}^2 - M_{K^+}^2$ we obtain

$$m_u/m_d = 0.49(5)$$

Paolo Lami (ETMC)

Quark masses at $N_f = 2 + 1 + 1$

Small interpolation of M_{D_s} data to m_s and m_c and analysis of the dependence on m_l and a^2

• Discretization effects: data in units of either r_0 or $M_{\langle cs \rangle}$.

 $M_{\langle cs\rangle}:$ meson mass corresponding to reference strange and charm quark with masses near their physical values.

• Extrapolation to the physical point: linear and quadratic fit.

Example of M_{D_s} analysis: linear fit (in units of r_0)

Same technique as with the kaon: interpolation to m_s and m_c that allows us to get $M_{D_s} = 1.969 \,\text{GeV}$ at the physical and continuum limit.

Comparing r_0 and $M_{\langle cs \rangle}$ units.

• units of r_0 : 3% discretization effects

• units of $M_{\langle cs \rangle}$: 0.3% discretization effects

$m_c(m_c) = 1.350(46) \,\mathrm{GeV}$

 $m_c(m_c) = 1.350(43)_{stat+fit+scale}(3)_{chir}(8)_{disc}(19)_{Z_P}(5)_{m_s} \text{ GeV}$

- $()_{stat+fit+scale}$: includes statystical errors and those induced by the fitting procedure. It also includes the uncertainty associated with the error on the scale.
- ()_{chir}: linear or quadratic fit.
- ()_{disc}: analysis in units of r_0 or $M_{\langle cs \rangle}$.
- ()_{Z_P}: different methods in calculating RI-MOM renormalization constants Z_P .
- $()_{m_s}$: uncertainty associated with the error on m_s .

Summary

	Our results	$FLAG_{N_f=2}$	$FLAG_{N_f=2+1}$
$m_{u/d}$ (MeV)	3.70(17)	3.6(2)	3.42(9)
$m_s(MeV)$	99.2(4.0)	101(3)	93.8(2.4)
$m_s/m_{u/d}$	27.0(1.3)	28.1(1.2)	27.5(4)
m_u/m_d	0.49(5)	0.50(4)	0.46(2)
$m_c(\text{GeV})$	1.350(46)		
m_c/m_s	11.86(59)		

August 2, 2013

・ロト ・回ト ・ヨト ・ヨー うへで

Thanks for the attention!

イロト イヨト イヨト

3

BACKUP SLIDES

Paolo Lami (ETMC)

Quark masses at $N_f = 2 + 1 + 1$

August 2, 2013

・ロト ・四ト ・ヨト ・ヨト

π analysis: Chiral and polynomial fit (units of $M_{\langle ss \rangle}$)

Quark masses at $N_f = 2 + 1 + 1$ A

August 2, 2013

Continuum extrapolation of the quantity $(aM_{\langle ss \rangle})^2$

22 / 19

Results of π analysis

	r ₀ .	Analysis	$M_{$	> Analysis
Quantity	Chiral Fit	Polynomial Fit	Chiral Fit	Polynomial Fit
m_l (MeV)	3.72(13)	3.87(17)	3.66(10)	3.75(13)
$r_0(GeV^{-1})$	2.39(6)	2.42(7)	-	-
$r_0(fm)$	0.470(12)	0.477(14)	-	-
$M_{ss}(GeV)$	-	-	0.672(9)	0.654(10)
$a(\beta = 1.90)(fm)$	0.0886(27)	0.0899(31)	0.0868(33)	0.0892(34)
$a(\beta = 1.95)(fm)$	0.0815(21)	0.0827(25)	0.0799(27)	0.0820(28)
$a(\beta = 2.10)(fm)$	0.0619(11)	0.0628(13)	0.0607(14)	0.0623(15)
B_0 (MeV)	2515(90)	-	2551(73)	-
f_0 (MeV)	121.1(2)	-	121.3(2)	-
l_3	3.24(25)	-	2.94(20)	-
\bar{l}_4	4.69(10)	-	4.65(8)	-

Quantity	No Correction	GL	CDH	CWW
$m_l(MeV)$	3.68(14)	3.76(14)	3.73(13)	3.72(13)
$r_0(fm)$	0.464(12)	0.466(12)	0.468(12)	0.470(12)
\bar{l}_3	3.42(20)	3.35(20)	3.34(21)	3.24(25)
\bar{l}_4	4.83(9)	4.77(9)	4.76(9)	4.69(10)
$B_0(MeV)$	2548(99)	2497(97)	2500(93)	2515(90)
$f_0(MeV)$	120.8(1)	120.9(1)	120.9(1)	121.1(2)

э.

・ロト ・四ト ・ヨト ・ヨト

FSE effects in π analysis

	GL	CDH	CWW	Lattice data M_{32}/M_{24}
$FSE_{M\pi,32}/FSE_{M\pi,24}$	0.994	0.985	0.981	0.972(13)

	GL	CDH	CWW	Lattice data f_{32}/f_{24}
$FSE_{f\pi,32}/FSE_{f\pi,24}$	1.023	1.040	1.054	1.050(19)

$\Delta_{corr}/\Delta_{raw}$	GL	CDH	CWW
M_{π}	0.80093	0.43535	0.32101
f_{π}	0.51765	0.18235	-0.05882

	GL	CDH	CWW
$R_{M\pi,24}$	0.0070	0.0187	0.0243
$R_{f\pi,24}$	-0.0280	-0.0469	-0.0632

Paolo Lami (ETMC)

Quark masses at $N_f = 2 + 1 + 1$

August 2, 2013

・ロト ・四ト ・ヨト ・ヨト

24 / 19

э.

Average values of some quantities calculated from π analysis.

$$\begin{aligned} r_0 &= 0.474(14) fm = 0.474(13)_{stat+fit} (3)_{Chiral} (6)_{FSE} fm \\ B_0 &= 2571(97) MeV = 2571(80)_{stat+fit} (22)_{Disc.} (33)_{FSE} (38)_{Z_p} MeV \\ f_0 &= 121.2(4) MeV = 121.2(2)_{stat+fit} (1)_{Disc.} (3)_{FSE} MeV \\ \overline{l_3} &= 3.11(34) = 3.11(23)_{stat+fit} (17)_{Disc.} (18)_{FSE} \\ \overline{l_4} &= 4.69(17) = 4.69(9)_{stat+fit} (2)_{Disc.} (14)_{FSE} \end{aligned}$$

イロト イヨト イヨト

Comparing r_0 and $M_{\langle ss \rangle}$ units: Polynomial fit

August 2, 2013

26 / 19

Results of K analysis

	r ₀ Analysis		M_{ss} Analysis	
Quantity	Chiral Fit	Polynomial Fit	Chiral Fit	Polynomial Fit
m_s (MeV)	101.6(4.4)	102.5(3.9)	99.4(2.9)	100.8(3.2)
$f_K(MeV)$	153.8(2.5)	154.2(1.9)	156.6(1.3)	155.1(1.6)
f_K at m_{up} (MeV)	152.3(2.6)	153.3(2.0)	155.2(1.4)	154.2(1.7)
f_K/f_{π}	1.179(20)	1.182(15)	1.201(09)	1.189(12)
f_K/f_π at m_{up}	1.168(20)	1.175(16)	1.190(11)	1.182(13)

Quantity	No Correction	GL	CDH
m_s (MeV)	101.1(4.4)	101.1(4.4)	101.6(4.4)
$f_K(MeV)$	151.8(2.6)	152.2(2.6)	152.3(2.6)
f_K/f_{π}	1.164(20)	1.167(20)	1.168(20)

 < □ > < ⊡ > < ⊡ > < ≧ > < ≧ >

 1
 August 2, 2013

Э.

$FSE_{M_K,32}/FSE_{M_K,24}$	GL	CDH	Lattice data M_{32}/M_{24}
Fit CDH	1	0.991	0.990(7)
Fit GL	1		0.990(7)

$FSE_{f_K,32}/FSE_{f_K,24}$	GL	CDH	Lattice data f_{32}/f_{24}
Fit CDH	1.007	1.028	1.020(13)
Fit GL	1.007		1.020(13)

$\Delta_{corr}/\Delta_{raw}$	GL	CDH
M_K	1	0.128
f_K	0.628	-0.414

$R_{M_{K},24}$	GL	CDH
Fit GL	0	
Fit CDH	0	0.0102
$R_{f_K,24}$	GL	CDH
Fit GL	-0.009	
Fit CDH	-0.009	-0.032

・ロト ・回ト ・ヨト ・ヨー うへで

Comparing r_0 and $M_{\langle cs \rangle}$ units: quadratic fit

	r ₀ Analysis		M _{cs} Analysis	
	Linear Fit	Quadratic Fit	Linear Fit	Quadratic Fit
$\bar{m}_c(\text{GeV})$	1.198(37)	1.201(37)	1.189(38)	1.190(38)

Paolo Lami (ETMC)

Quark masses at $N_f = 2 + 1 + 1$

August 2, 2013

< E