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Introduction

I U (1) axial symmetry is anomalously broken.

I The quark mass is not protected by symmetry, and could
receive arbitrary quantum corrections.

I Should there be an additive renormalization to the quark
mass?

I Convention field theory shows that there isn’t, because of the
lack of enough small instantons.

I The quark mass is ambiguous. [Creutz, 2004]

Conclusion of this talk:

I For Nf = 1 QCD, there can be additive renormalization of the
fermion mass generated by lattice scale instantons for a class
of lattice actions.



Outline

I Anomalous mass generation by lattice scale instantons and a
numerical study.

I A theoretical estimation of the density of lattice scale
instantons and continuum limit.

I Explore the design space of lattice action.



Anomalous mass generation by lattice scale instantons

A mass term would be generated by instanton-like gauge field
configurations.[’t Hooft, 1976]

manom ∼
a2

m
ρa (1)

I a is lattice spacing

I m is the input quark mass

I ρa is the density of the lattice scale instantons



’t Hooft Effective Lagrangian [’t Hooft, 1976]

The fermion zero mode u0 (x) of an instanton of radius R at origin
would contribute to the Green’s function outside the instanton as:

〈q (x) q (y)〉 = u0 (x)
1

m
u0 (y)

=
Rγµxµ

x4
1

m

Rγνyν

y4

(2)

In momentum space, the contribute to the propagator by fermion
zero modes is:

S(p) =

∫
d4xe−ip·x 〈q (x) q (0)〉

=
1

/p

R2

m
ρ (R) dR

1

/p

(
p � 1

R

) (3)

ρ (R) dR is the density of instanton of radius R



’t Hooft Effective Lagrangian [’t Hooft, 1976]

A mass term will be generated by instantons upto the scale of
instanton size.

R2

m
ρ (R)dR (4)

We are interested in the “hard” fermion mass which act like a
normal fermion mass term in all scale. This mass term cannot be
generated by intantons of physical size, it can only come from
lattice scale instantons, so

manom ∼
a2

m
ρa (5)



Anomalous mass generation by lattice scale instantons

The Landau-gauge-fixed fermion propagator using volume source
and volume sink takes the following form

S(p) =
1/Zq (p)

i /̄p + mR (p)

p̄µ = sin pµ

(6)

The renormalization factor Zq and the renormalized mass mR

could be extracted by (RI/MOM [Sturm et al., 2009])

mR (p) = 1/Zq (p)Tr
[
S−1(p)

]
1/Zq (p) =

ip2

Tr
[
/pS−1(p)

] (7)

A =
β

3

 ∑
x ;µ<ν

(1− 8c1)P1×1
µν + c1

∑
x ;µ6=ν

P1×2
µν

 (8)



Anomalous mass generation by lattice scale instantons

Figure : mR for β = 8.2 c1 = 0.05, quenched lattice 164, with M = 1.8,
Ls = 64
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Anomalous mass generation by lattice scale instantons

Figure : mR for β = 8.3 c1 = 0.05, quenched lattice 164, with M = 1.8,
Ls = 64
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Quark condensate, Tc and momentum scale

Figure : Determine the momentum scale relative to Tc
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Anomalous mass generation by lattice scale instantons

I We do see a 1/m enhanced mass term suggesting an
anomalous mass.

I This behavior survives up to p ∼ 1/a implying a hard mass up
to the lattice scale.

I However, it would be very hard to study the continuum limit.

I Instead, try a theoretical analysis.



Density of lattice scale instantons and continuum limit

For Nf = 1, the density of instantons ρ (R) of radius R is
approximately[’t Hooft, 1976]

ρ (R) dR ∼ mR
dR

R5
exp

(
− 8π2

g (R)2

)
(9)

Above formula should be most accurate when R is small. One
might expect for lattice scale instantons

ρa ∼ ma
1

a4
exp

(
−8π2

g2
a

)
(10)

Here, ga is the coupling constant at lattice scale. Unfortunately,
the ρa and manom would vanish in the continuum limit (a, ga → 0
follows renormalization group equation).



Density of lattice scale instantons and continuum limit

Assume the minimum action of a lattice-scale instanton is

Ainst = α
8π2

g2
a

(11)

The density of lattice scale instanton should be

ρa ∼ ma
1

a4
exp

(
−α8π2

g2
a

)
(12)

Assumptions

I For an instanton-like gauge configuration, the fermion
determinent would contribute only a factor of ma, since other
modes are not affected much by the instanton.

I If we divide the infinite lattice into size-fixed sub-blocks(e.g.
164), the probabilities of having an instanton in each block are
independent.



The lower bound of the probability of having an instanton in a
pure gauge, size-fixed lattice, e.g. 164

p16
4

pure gauge =

∫
instanton [DU] exp (−A [U])∫

[DU] exp (−A [U])

>
∆Ω exp

(
−α8π2

g2
a
− ε′

g2

)
Ω

> exp

(
− (α + ε)

8π2

g2
a

) (13)



The upper bound of the probability of having an instanton in a
pure gauge, size-fixed lattice, e.g. 164

p16
4

pure gauge =

∫
instanton [DU] exp (−A [U])∫

[DU] exp (−A [U])

<
Ω exp

(
−α8π2

g2
a

)
∆Ω exp

(
− ε′

g2
a

)
< exp

(
− (α− ε) 8π2

g2
a

)
(14)



Density of lattice scale instantons and continuum limit

manom ∼
a2

m
ρa (15)

ρa ∼ ma
1

a4
exp

(
−α8π2

g2
a

)
(16)

with the renormalization equation

8π2

g2
a

≈
(

11− 2

3
Nf

)
ln

1

a
(17)

We got our final expression for the anomalous quark mass term.

manom ∼ a
31
3
α−1 (18)



Density of lattice scale instantons and continuum limit

Given the minimum action of a lattice-scale instanton

Ainst = α
8π2

g2
a

(19)

The generated anomalous mass would scale like

manom ∼ a
31
3
α−1 (20)

So, if the generated anomalous mass term does not vanish in the
continuum limit, we should have

α ≤ 3

31
≈ 0.097 (21)

Above criteria is the necessary and sufficient condition.



Explore the design space of lattice action

Wilson Action

A =
β

3

∑
x ;µ<ν

P1×1
µν (22)

α < 0.83 (23)

Rectangular Action

A =
β

24

∑
x ;µ 6=ν

P1×2
µν (24)

α < 0.69 (25)

Recall the definition of α,

Ainst = α
8π2

g2
a

(26)



Explore the design space of lattice action

A[U] = Awilson[U]− Nsample inst[U]∆A

∆A = Awilson[U16×16×16×16
sample inst ]− α8π2

g2
a

(27)



Conclusion

For Nf = 1 QCD, there can be additive renormalization of the
fermion mass generated by lattice scale instantons for a class of
lattice actions.



Thank you
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Calculate minimum instanton action α

Figure : Cooling configuration with one instanton
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Quark condensate and Tc
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Quark condensate and Tc
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