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Large Hadron Collider   -   CERN

•   A Higgs-like particle is found
    Is it the Standard Model Higgs? or

•   Near-conformal strong dynamics?  

•   Composite PNGB-like Higgs?

•   SUSY?

•   5 Dim?
...

Primary focus of BSM 
lattice  effort and this talk

  primary mission:

- Search for Higgs particle

- Origin of Electroweak symmetry breaking
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  USQCD BSM White Paper - community based effort 
  short synopsis is input into US Snowmass 2013 planning:

USQCD and the composite Higgs at the Energy Frontier

The recent discovery of the Higgs-like particle at 126 GeV is the beginning of the experimental
search for a deeper dynamical explanation of electroweak symmetry breaking beyond the Standard
Model (BSM). The USQCD collaboration has developed an important BSM research direction
with the primary focus on the composite Higgs mechanism as outlined in our recent USQCD BSM
white paper [1] and in this short report. Deploying advanced lattice field theory technology, we are
investigating new strong gauge dynamics to explore consistency with a composite Higgs particle
at 126 GeV which will require new non-perturbative insight into this fundamental problem. The
organizing principle of our program is to explore the dynamical implications of approximate scale
invariance and chiral symmetries with dynamical symmetry breaking patterns that may lead to the
composite Higgs mechanism with protection of the light scalar mass, well separated from predicted
new resonances, which maybe on the 1-2 TeV scale. Based on an underlying strongly-coupled
theory, lattice calculations provide the masses and decay constants of these new particles, enabling
concrete predictions for future experimental results at colliders and in dark matter searches.

On the other hand, if the higher resonances are too heavy to be directly probed at the LHC,
indirect evidence for Higgs compositeness may appear for example as altered rates for electroweak
gauge boson scattering, changes to the Higgs coupling constants, or the presence of additional light
Higgs-like resonances. Here lattice calculations are used to derive the low energy constants in an
E↵ective Field Theory description to predict departures of a composite Higgs dynamics from the
standard model predictions. Of course as new experimental evidence from the LHC is forthcoming,
BSM lattice simulations will be focused on an increasingly narrower class of candidate theories,
consistent with experimental constraints, increasing its power as a theoretical tool in the search
for BSM physics. Two major components of our BSM lattice program are carefully planned and
coordinated, as summarized below.

Near-conformal composite Higgs

If the strongly coupled BSM gauge model is very close to the conformal window with a small
but nonvanishing �-function, a necessary condition is satisfied for spontaneous breaking of scale
invariance and generating the light dilaton state. 1 It remains an important and unresolved non-
perturbative question, if close to the edge of the conformal window the light scalar can be identified
with the dilaton of broken scale invariance. The possibility that a light Higgs might arise as a
pseudo-dilaton associated with spontaneous breaking of conformal symmetry is also rather natural
in supersymmetric theories with flat directions. Arguments exist that such radiatively stable flat
directions achieve a light dilaton in a strongly coupled theory. Recent theoretical developments
provide lattice formulations of a class of such theories including the case of N = 4 Yang-Mills
which is also being investigated by USQCD [2].

Since near-conformal models exhibit chiral symmetry breaking, a Goldstone pion spectrum is gen-
erated and when coupled to the electroweak sector, the onset of electroweak symmetry breaking
with Higgs mechanism is realized. For a particular minimal choice of gauge dynamics, fig. 1 of
an ongoing project illustrates qualitatively new features near conformality [3]. A light scalar is
emerging close to the EWSB scale, separated from the resonance spectrum which is in the 1-2 TeV
range. Close to the conformal window a low mass 0++ glueball state can be expected and it will
mix with the composite scalar state. The interpretation of the scalar spectrum will require new
phenomenology and e↵ective field theory to understand the role of electroweak interactions after
they are switched on. The dynamical Higgs mass from composite strong dynamics is expected to
be shifted by electroweak loop corrections, dominated by large negative mass shift from the top

1 For any choice of the fermion representation R of the color gauge group, the conformal window is defined by the
range of the flavor number Nf for which the �-function has an infrared fixed point, where the theory is in fact
conformal.
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FIG. 1. This plot is unpublished and for illustration only. Some of the flavor singlet scalar data points are expected
to remain in flux before final analysis and publication [3]. The ongoing work indicates the emergence of a light
flavor singlet scalar state (red) with 0++ quantum numbers in the sextet rep of a fermion doublet with the minimal
realization of the composite Higgs mechanism. Annihilation diagrams driven by strong gauge dynamics downshift the
mass of the flavor singlet state close to the EWSB scale. Turning on a third massive EW singlet in the model might
bring the �-function even closer to zero with minimal tuning. The fermion mass dependence of the isotriplet meson
(blue) is also shown, not e↵ected by disconnected annihilation diagram. In the chiral limit it is a heavy resonance
above 1 TeV. The model predicts several resonances in the 1-2 TeV range.

to the electroweak scale [103], and has been confirmed by lattice QCD calculations [105–
107]. The discrepancy between experiment and QCD-like technicolor is worsened by the
absence of light states in QCD: replacing mh = 126 GeV with a typical technihadronic scale
M (ref)

H � 1 TeV shifts the experimental value to S � �0.15 ± 0.10 (the shift is logarithmic

in M (ref)
H ).

To see how non-QCD-like dynamics may change the situation, consider

S = 4�ND lim
Q2�0

d

dQ2
�V �A(Q2) � �SSM .

There are three important ingredients in this expression:

1. ND is the number of doublets with chiral electroweak couplings; its presence corre-
sponds to the intuition that S measures the “size” of the sector that hides electroweak
symmetry.

2. �SSM accounts for the three Nambu–Goldstone bosons (NGBs) eaten by the W and
Z bosons, and also sets S = 0 for the standard model.

3. �V �A(Q2) is the transverse component of the di�erence between vector and axial-
vector vacuum polarization functions, and can also be related to a dispersive integral
of spectral functions, 4���

V �A(0) = 1
3�

� �
0

ds
s [RV (s) � RA(s)].

Parity doubling between RV (s) and RA(s) will therefore reduce S. Such dynamics may be
expected near to the conformal window.

FIG. 7. The S parameter for SU(3) gauge theories with Nf = 2 and 6 fundamental fermions,
from Ref. [108]. MP is the pseudoscalar mass, while MV 0 is the vector meson mass in the chiral
limit. The Nf = 6 theory has 35 pseudo-NGBs, and here we imagine that 32 of them have mass
� 0.6MV 0.

On the lattice, we measure �V �A(Q2) from V and A two-point current correlation functions.
Existing calculations use overlap or domain wall fermions, for which good chiral and flavor

24

FIG. 2. From [11], lattice simulation results for the S-parameter per electroweak doublet, comparing SU(3) gauge
theories with Nf = 2 (red triangles) and Nf = 6 (blue circles) degenerate strongly-coupled fermions in the funda-
mental representation. The horizontal axis is proportional to the pseudoscalar Goldstone boson mass squared, or
equivalently the input fermion mass m. The Nf = 2 value of S is in conflict with electroweak precision measure-
ments, but the reduction at Nf = 6 indicates that the value of S in many-fermion theories can be acceptably small,
in contrast to more näıve scaling estimates [13].

[1] T. Appelquist et al., http://www.usqcd.org/documents/13BSM.pdf.
[2] S. Catterall, D. B. Kaplan, and M. Unsal, Phys.Rept. 484, 71 (2009), 0903.4881.
[3] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong, unpublished.
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•  After the Higgs is found why bother with BSM? 
   Nothing else was seen and perhaps no new physics 
   below the Planck scale? 

• But Standard Model Higgs potential is 
   parametrization rather than dynamical explanation 
   λϕ4 not gauge force - severe consequences! 

• Built in cutoff from triviality with quadratic 
  divergences leading to fine tuning and the hierarchy 
   problem; vacuum instability

• Standard Model is low energy effective theory with
   built in cut-off

• Can new physics from compositeness hide within 
   LHC14 reach, or just above, with some imprint to 
   see?

• But isn’t compositeness dead anyway and we 
   should not expect it in the LHC14 run?
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Rational for BSM: 
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voices:  a light Higgs-like scalar was found, consistent 
with SM within errors, and composite states have not 
been seen below 1 TeV. Strongly coupled BSM gauge 
theories are Higgs-less with resonances below 1 TeV
>>  Nima and the tombstone 

facts: Compositeness and a light Higgs scalar are not 
incompatible; search for composite states was not 
based on solid predictions but on naively scaled up 
QCD and unacceptable old technicolor guessing 
games. 

lattice BSM plans:  LHC14 will search for new physics 
from compositeness and SUSY, and the lattice BSM 
community is preparing quantitative lattice based 
predictions to be ruled in or ruled out. 
We better get it right!

Rational for BSM: 



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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Two-index symmetric  SU(3) color
Wong, Sinclair, Holland

adjoint SU(2) color
Del Debbio, Rantaharju, Pica, Athenodoru

adjoint SU(3) color
Shamir

fundamental SU(3) color:
Nagai, Ohki, Schaich, Rinaldi, Miura, Hasenfratz, 
Ogawa, Yamazaki, Liu, Petropoulos, Yamada, 
Da Silva, Aoki, Iwasaki, Buchoff, Cheng

fundamental SU(2) color:
Tomii, Voronov       

 Two-index antisymmetric SU(4) color

although ~30 talks, SCGT is 
only part of the BSM theory 
space!  SUSY, 5D, ...



25 additional talks not directly obsessed with the conformal window (as I will be)

Extended theory space:
SUSY ( LHC14? )
Piemonte, Munster, Steinhauer, Weir

4+1D and Gauge-Higgs unification (difficult to control the cutoff              lattice role?)
Yoneyama, Knechtli, Lambrou, Kashiwa, Hetrick, Cossu (Hosotani mechanism)

Gravity
Gorlich, Zubkov, Rindlisbacher

Higgs and Yukawa models - symmetry breaking
Maas, Knippschild, Nagy, Wurtz, Veemala

Early universe 
dark matter  Buchoff
MSSM  Rummukainen

Theory tools:
Conformal radial quantization (Brower)

Large N
Tomboulis, Narayanan, Okawa, Keegan, Bali

Anomalous dimension
Pena, August

New reps
SO(4) MWT Hietanen

Definitions Phase diagram Spectrum Conclusions and outlook

Higgs and Z-boson masses

Isotropic

Lattices 64⇥ 323 ⇥ 5 at � = 1
mZ 6= 0 does not decrease with L (Higgs mechanism!) and
mZ & mH

We see excited states for the Higgs and the Z-boson
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Knechtli talk

Hosotani mechanism on the lattice

Hosotani mechanism is a method to have 

gauge boson masses adding compact extra-

dimensions

(Hosotani 1983 – perturbative analysis)

Lattice simulations of 2 flavors of adjoint 

fermions in 3+1 compact dimension (fermions 

periodic)

Data confirms non pertubatively the 

presence of several phases

Phases are related to different gauge 
symmetry breaking patterns

On the right: density plots of Polyakov Loop, 

the phase of its eigenvalues, effective 

potential prediction.

Next: spectrum of masses, 5-dimensions, mixed 

fundamental-adjoint fermion actions.

confined

Cossu talk



Outline
  
Conformality ?
      Nf=2 SU(2) MWT (illustration) 
      Nf=12 SU(3) ???

Light Higgs near conformality     
      dilaton and/or light scalar close to conformal window?
      running (walking) coupling
      chiral condensate
      finite size scaling and spectroscopy

Light composite Higgs in the PNGB scenario   
      Two fermions in fundamental rep with SU(2) color 
    
SUSY

Phenomenology
       S-parameter
       WW scattering
       dark matter
       EW phase transition

Summary and Outlook   

Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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five lattice models to illustrate
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Nf=2 SU(2) adjoint rep (MWT) and conformality 
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Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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FSS for the masses in the spectrum:

MH = L

�1
f(x)

In order to recover the correct scaling with m at infinite volume:

f(x) ⇠ x

1/ym
, as x ! 1

If we go to the massless limit, at fixed volume and cut-off, the masses of the states in the 
spectrum of the theory saturate and scale as:

MH / L�1

x = L

ym
m

Tuesday, 30 July 13

Extensive new large volume spectrum study
compatible with conformality
topology monitored
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Figure 11: Cartoon of the Minimal Walking Technicolor Model extension of the SM.

convenient to use the Weyl basis for the fermions and arrange them in the following
vector transforming according to the fundamental representation of SU(4)

Q =

⇤
⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

UL
DL
�i⌅2U⇤R
�i⌅2D⇤R

⌅
����������⌃
, (3.49)

where UL and DL are the left handed techniup and technidown, respectively and UR
and DR are the corresponding right handed particles. Assuming the standard breaking
to the maximal diagonal subgroup, the SU(4) symmetry spontaneously breaks to SO(4).
Such a breaking is driven by the following condensate

⌅Q�i Q⇥j⇤�⇥E
ij⇧ = �2 ⌅URUL +DRDL⇧ , (3.50)

where the indices i, j = 1, . . . , 4 denote the components of the tetraplet of Q, and the
Greek indices indicate the ordinary spin. The matrix E is a 4⇥4 matrix defined in terms
of the 2-dimensional unit matrix as

E =
�

0
0

⇥
. (3.51)

Here ⇤�⇥ = �i⌅2
�⇥ and ⌅U�LUR

⇤⇥⇤�⇥⇧ = �⌅URUL⇧. A similar expression holds for the
D techniquark. The above condensate is invariant under an SO(4) symmetry. This

24

new lepton 
 doublet ?
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Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.
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interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].
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the lattice spacing. The Banks–Casher relation consequently cannot be expected to
hold exactly and the detailed properties of the low quark modes could be significantly
different from those in the continuum theory. On the other hand, as long as only
renormalizable quantities are considered, their values in the continuum limit must
in principle be computable using the Wilson theory.

The spectral density of the (hermitian) Dirac operator, and thus the average num-
ber of quark modes in a given range of eigenvalues, are known to be renormalizable
[5]. In the present paper, we first give a second proof of this important fact (sect. 3).
We then discuss the chiral perturbation expansion of the mode numbers and show, in
sect. 5, that their calculation in lattice QCD requires only a modest computational
effort. Taken together, these results allow the chiral condensate to be computed in
the Wilson theory in a straightforward manner (sect. 6). Spectral projectors however
have a wider range of applicability and provide interesting opportunities to explore
the chiral regime of QCD, some of which are briefly mentioned in sect. 7.

2. Preliminaries

For simplicity we focus on QCD with a doublet of mass-degenerate quarks, but the
theoretical discussion is more generally valid and extends to the case of real-world
QCD. The quarks will be referred to as the up and down quarks, the associated
Goldstone bosons as the pions and the SU(2) flavour symmetry as the isospin sym-
metry. We consider both the continuum and the Wilson lattice theory in order to
make it clear in which way the mode number computed on the lattice is related to
the one defined in the continuum theory.

2.1 Spectral density and mode number in the continuum theory

In a space-time box of volume V with periodic or antiperiodic boundary conditions,
the euclidean massless Dirac operator D in presence of a given gauge field has purely
imaginary eigenvalues iλ1, iλ2, . . ., which may be ordered so that those with the
lower magnitude come first. The associated average spectral density is given by

ρ(λ,m) =
1

V

∞
∑

k=1

〈δ(λ − λk)〉 (2.1)

where the bracket 〈. . .〉 denotes the QCD expectation value and m the current-quark

2

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

〈ūu〉 (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
be read in either direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the
massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a
more convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 − m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like
extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free
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where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.
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Figure 3. Mode number per unit volume for the set S1 (am0 = �1.15 on a 64 ⇥ 243 lattice): lattice

data and fit result in log-log scale. The reference fit is S1:F4 in table 6. The parameters in the axis labels

have been chosen to be a�4�̄0 = 1.31 ⇥ 10�5 and am = 0.0826 (best-fit results). The black points are the

data computed by numerical simulations. The red line is the best fit to eq. (3.8), while the orange band

corresponds to the 1⇥ region. The blue dashed lines delimit the data used for the fit.

4.3 Set S2: finite-volume e�ects

As analyzed in [22], meson masses computed on the set S1 (am0 = �1.15 on 64⇥ 243) are identical
to the ones computed on the set S2 (am0 = �1.15 on 64 ⇥ 323), within the statistical errors that
are of the order of 0.5%. It is reasonable to expect that finite-volume e⇥ects are under control
also for the mode number. However this is explicitly checked by computing the mode number per
unit volume using the projector method for few values of a�. The agreement is always within
1� as shown in table 4. Since larger finite-volume e⇥ects are expected for lower eigenvalues, we
can conclude that the finite-volume e⇥ects for the set S1 are always negligible with respect to the
statistical errors for a� ⇤ 0.086.

4.4 Set S3: lighter mass

The set S3 (am0 = �1.18 on 64⇥243) is used to check the stability of the ⇥̄⇥ anomalous dimension
while going closer to the chiral limit. For this set no detailed investigation of finite-volume e⇥ects
is available. However the isotriplet pseudoscalar meson is expected to be about 10% lighter than
in infinite volume (see analysis in [22]). Similarly one has to expect sizable finite-volume e⇥ects
also for the spectral density at low eigenvalues, while for larger eigenvalues the finite volume-e⇥ects
become smaller. I will work under the assumption that the finite-volume e⇥ects are comparable in
the two sets S1 and S3 at fixed eigenvalue. Therefore the analysis is restricted to the safe range
a� ⇤ 0.086.
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Dirac Eigenvalues

12

can be isolated via a twice-subtracted spectral representation:

〈q̄q〉 = −2m

∫ µ

0

dλ
ρ(λ)

m2 + λ2
− 2m5

∫ ∞

µ

dλ

λ4

ρ(λ)

m2 + λ2
+ γ1m+ γ2m

3 . (25)

The subtraction constants γ1 and γ2 contain the UV-divergences. Their respective be-

haviours are γ1 ∼ Λ2
UV, and γ2 ∼ log [Λ2

UV], and their actual values depend on two physical
renormalization conditions used to define the finite condensate on the LHS of Eq. (24).
We shall investigate the limiting behaviour when m → 0. The second integral and the

subtraction terms in Eq. (25) vanish in the chiral limit (m → 0). Therefore only the
first integral, sensitive to the IR region, can result in a non-analytic term and has to be

investigated further. A simple change of variable yields:

〈q̄q〉 = −2

∫ µ/m

0

dx
ρ(mx)

1 + x2
+A(m) , (26)

where A(m) stands for an analytic function of m. From Eq. (26), following the same
arguments used in QCD, one can readily obtain:

〈q̄q〉 m→0∼ mηq̄q ⇔ ρ(λ)
λ→0∼ ληq̄q . (27)

This in turn implies:

ηq̄q|QCD−like = 0 , ηq̄q|mCGT > 0 , (28)

since in QCD the condensate remains finite in the chiral limit, while it vanishes in mCGT.

Let us derive the same scaling coefficient ηq̄q (4) from a RG analysis. The starting point
is the two-point function Cq̄q(t; m̂, µ), as in Eq. (8), where the hadronic field H = q̄q, and
the explicit dependence on the coupling g is suppressed. The solution of the RG equations

for this specific case is:

Cq̄q(t; m̂, µ) = b−2∆q̄qCq̄q(tb
−1; bymm̂, µ) . (29)

Imposing again bymm̂ = 1, finally leads to:

Cq̄q(t; m̂, µ) = m̂
2∆q̄q
ym Cq̄q(tm̂

1/ym ; 1, µ) . (30)

Inserting a complete set of states the exponential decrease of any state other than the

vacuum for large t results in:

Cq̄q(t; m̂, µ)
t→∞∼ m2ηq̄q , (31)

whence the scaling exponent (27) follows:

ηq̄q =
∆q̄q

ym
=

3− γ∗
1 + γ∗

. (32)
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Figure 11: Modenumber per unit volume: lattice data and fit results in log-log scale. The
blue dots are the data points from Table 1. The red curve is the best fit line with the
parameters we determined. The two vertical green lines delimit the data used for the fit
i.e. between points 29 and 48.
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of the gradient flow coupling in the continuum as a function of c. (Bottom right) Relative

size of the continuum extrapolation for the three representative cases c = 0.3, 0.4, 0.5.

at the same value of the bare coupling as the available one, but with a non-zero quark

mass. Actually the bare parameters of the simulation correspond to the lattice labeled as

8∗ in [35], and the interested reader is encouraged to consult the original work for more

details. Defining the dimensionless PCAC quark mass z = Lm, we obtain

∂g2GF

∂z

∣∣∣∣
u=4.484

=

{
0.19(7) for c = 0.3

0.17(9) for c = 0.4
, (4.11)

to be compared to the corresponding value of 1.4(4) for the Schrödinger functional coupling.

The mass dependence of the gradient flow coupling as defined in the present paper is smaller

by an order of magnitude.

5 Conclusions

The gradient flow can be used to defined a renormalized coupling at a scale µ = 1/
√
8t. In

this work we have studied the perturbative behavior of the gradient flow in the Schrödinger

functional. By setting the renormalization scale proportional to the linear size of the SF

box, µ = 1/
√
8t = 1/cL, we have defined a family of running coupling constants valid for an

arbitrary SU(N) gauge field coupled to arbitrary fermions. Since this coupling definition

– 16 –

Fritzsch talk

Nf=2 L ~ 0.4 fm  SU(3)

gradient flow coupling with SF boundary conditions
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],

⇤E(t)⌅ = 3

4⇤t2
�(q)

�
1 + k1�(q) +O(�2)

⇥
, q =

1⇧
8t
, k1 = 1.0978 + 0.0075⇥Nf .
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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finite four-dimensional volume and the boundary condition of the gauge field is kept periodic.
The new running coupling scheme was tested with four massless fermions in the fundamental
representation of the SU(3) color gauge group. It performs very well, with new plans for
applications in BSM gauge theories. The measured renormalized couplings are very accu-
rate, the scheme defines a one-parameter family which can be adjusted to several goals, and
tunneling appears to be suppressed allowing to probe stronger renormalized gauge couplings.

Lüscher has shown in the infinite volume limit that the gradient flow of the gauge field
energy can be expanded for small flow-time t into a power series of the renormalized coupling
�(q) of the MS scheme [205],
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.
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Fig. 5: The top plot shows extrapolation to the
continuum step function with scale factor s = 1.5
and stepping from the targeted renormalized cou-
pling g2 = 1.9 in the continuum. The physical
size L is held fixed in some units, while the ratio
a2/L2 is extrapolated to zero with the expected
linear behavior. The lower plot shows agreement
in the continuum limit with the perturbative step
function (related to the �-function) at weak cou-
pling.

Since the gradient flow probes the gauge field
on the scale

⇧
8t, a new running coupling can be

defined as a function of L in finite volume V = L4

while holding c = (8t)1/2/L fixed:

�c(L) =
4⇤

3

⇤t2E(t)⌅
1 + ⇥(c)

.

This volume dependent coupling includes the
normalization factor ⇥(c) to match any defini-
tion of the renormalized coupling on the 1-loop
level [99]. It is not dependent on the coupling
and given by

⇥(c) = ⌅4
3(e

�1/c2)� 1� c4⇤2

3
,

where ⌅3 is the third Jacobi function. In tests
with four massless fermions in the fundamental
representation of the SU(3) color gauge group,
c = 0.3 was chosen probing the renormalized cou-
pling on the scale µ = 1/3L.

The fact that the volume is finite necessi-
tates the separation of the gauge Fourier modes
into zero and non-zero modes. The non-zero
modes can be treated in 1-loop perturbation the-
ory while the non-trivially interacting zero modes
need to be treated exactly. The result at leading
order contains both algebraically and exponen-
tially suppressed finite volume correction terms
relative to the infinite volume result.

Although the method passed all the necessary
tests in the simple gauge model with four fun-
damental flavors, interesting BSM applications
have to come as part of new objectives in Kuti’s proposed research.

massless fermions; antiperiodic all directions  
s=1.5 step Nf=4 staggered fermions; 4-stout;  L=12-36
results for Nf=8 and sextet are coming

Nf=4  c=0.3
L=12-36

beta-function has non-
universal but calculable 
correction

potential advantage: beta-function has conventional 
loop expansion

Nf=2 SU(2) adjoint rep (MWT) and conformality 



Twelve fundamental and two sextet fermion flavors J. Kuti and C. Schroeder

2.5 Generalized FSS fitting procedure with spline based general B-form

Following a new fitting strategy, we investigated if the failed global conformal FSS analysis
can be attributed to restrictions on the conformal scaling functions f (x). The restrictions were
manifest in the physics-motivated fitting procedure we applied above. Our new general approach
is different from [24, 45] but addresses related issues. We developed a general least-squares fit-
ting procedure to the scaling functions using the B-form of spline functions without any further
restrictions. In this procedure, the function f (x) is described by piece-wise polynomial forms con-
structed from spline base functions with general coefficients in overlapping intervals of the scaling
variable x. The shape of the B-form can be changed without limitations by increasing the number
of base functions and the number of scaling intervals in x bracketing the overlapping data range.
The details of this new analysis will be reported elsewehere [70].
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Figure 5: Conformal FSS fits using spline based B-forms in three different channels. The fits are preformed in each
channel separately with the question mark on g indicating difficulties of error estimates in bad fits of Fp .

Our fitting procedure in its setup requires two steps. In the first step, for any fixed choice
of the exponent g , the best fitted function f (x) is determined in spline function B-form from the
minimization of the weighted c2 expression. According to a general algorithm, the x-range of the
data set is divided into intervals separated by internal knots and adding end point knots for B-form
spline construction. The number of coefficients is determined by the number of knots and the order
of the spline polynomials of the sub-intervals. The weighted c2 sum is minimized with respect
to the coefficients of the base functions in the B-form. This will produce the best fit for fixed g
with a minimized c2 sum which will depend on g . In the second step, we minimize the c2 sum
with respect to g to determine the best fit of the critical exponent. The one-s confidence interval is
determined from the variation of the c2 sum as a function of g .

In Figure 5 we show three typical fits for illustration. The fit to the Goldstone pion in the
PCAC channel improved as expected, with considerable increase in the error. The tension across
channels decreased, as illustrated by comparison with the rho-channel fit, but the fit to Fp remained
unacceptable. With the extended data set we are unable to reproduce results in [24,45] which used
tables from our earlier limited subset of data [21] in favor of consistency with the conformal phase.
It is important to emphasize that we have not reached definitive conclusions about the failure of
conformal tests. As we stated earlier [21], we have not analyzed yet the leading scaling violation
effects and did not investigate if the good scaling form in separate quantum number channels can be
explained in the chirally broken phase by strongly sqeezed wave function effects. In disagreement

8

Nf=12 SU(3) fundamental rep and conformality? 

LM = f (x) + L−ωg(x)
x = m1/1+γ L
ω = ′β (g*)

LHC finds conflicts in conformal FSS analysis:

unable to fix with leading scaling violation to conformal 
FSS analysis:

unable to fix with leading scaling violation to conformal 
FSS analysis:

In contrast, Boulder group (Hasenfratz talk) presented 
some results in succeeding with the fix

latKMI group did not detect 
this problem
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Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction
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light Higgs near conformality (dilaton-like?)

mσ

fσ
→ ?

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
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erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
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perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga
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divergence of the dilatation current in Eq. (4) we get
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where F� is the TC pion decay constant and ⇥ scales like 1/
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with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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light Higgs near conformality (dilaton-like?)

mσ

fσ
→ ?

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)
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is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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=

⇥(�)
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, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
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µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
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where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:
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H)2 =

3
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1
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f 2
⇤

m2
⌅ . (6)

few hundred GeV Higgs impostor?

Foadi, Fransden, Sannino
open for spirited theory discussions 4

t

W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
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⇥
, with covariant derivative DµU ⇥
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The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)
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sponding to loop corrections involving TC composites only. The latter contribute to the dynamical
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doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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→ ?

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �
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µ
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⇥
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=

⇥(�)
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NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
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perturbative parts of the composite gauge operator Ga
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�
µ
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.

8



but how light is light ? 

5

where F� is the TC pion decay constant and ⇥ scales like 1/
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which is appropriate for a TC theory with one weak technidoublet, then �M2
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t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =
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d(RTC)
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NTD

v2

f 2
⇤

m2
⌅ . (6)
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs
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LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
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correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-
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M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
t + 2s⇤

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,
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Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.
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We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
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⇤
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mσ

fσ
→ ?

It is easy to derive, like for example in [70], the dilaton ma-
trix element of the energy-momentum tensor trace using some
particular definition of the subtraction scheme,

⇧⌃(p = 0)|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ ⌅ 4

f⌃
⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (9)

When combined with Eq. (6), the partially conserved dilatation
current (PCDC) relation is obtained,

m2
⌃ ⌅ �

4
f 2
⌃

⇧0|
⌃
⇥
µ
µ(0)
⌥

NP
|0⌃ . (10)

Predictions for m⌃ close to the conformal window depend on
the behavior of f⌃ and the gluon condensate

⌃
Ga
µ⌅Gaµ⌅

⌥
NP

of
Eq. (7). There are two di↵erent expectations about the limit
of the gluon condensate to f⌃ ratio when the conformal win-
dow is approached. In one interpretation, the right-hand side of
Eq. (10) is predicted to approach zero in the limit, so that the
dilaton mass m2

⌃ ⌅ (Nc
f � Nf ) · ⇤2 would parametrically van-

ish when the conformal limit is reached. The ⇤ scale is defined
where the running coupling becomes strong to trigger ⌥SB. The
formal parameter Nc

f � Nf with the non-physical (fractional)
critical number of fermions vanishes when the conformal phase
is reached [70]. In an alternate interpretation the right-hand
side ratio of Eq. (10) remains finite in the limit and a residual
dilaton mass is expected when scaled with f⌃ ⌅ ⇤ [73, 74].

It is important to note that there is no guarantee, even with
a very small ⇥-function near the conformal window, for the re-
alization of a light enough dilaton to act as the new Higgs-like
particle. Realistic BSM models have not been built with para-
metric tuning close to the conformal window. For example, the
sextet model is at some intrinsically determined position near
the conformal window and only non-perturbative lattice calcu-
lations can explore the physical properties of the scalar particle.

6.3. The non-perturbative gluon condensate on the lattice
The lattice determination of the non-perturbative gluon con-

densate can help to understand the consequences of the PCDC
relation. Power divergences are severe in the calculation of the
lattice gluon condensate, because the operator �Ga

µ⌅Gaµ⌅ has
quartic divergences. The gluon condensate is computed on the
lattice from the expectation value of the plaquette operator UP.
On the tree level we have the relation

lima⇤0

�
1
a4 ⇧1 �

1
3

tr UP⌃
⇥
=
⇧2

36
⇧�
⇧

GG⌃lattice (11)

as the continuum limit is approached in the limit of vanishing
bare lattice coupling g0. At finite lattice coupling we have the
sum of a perturbative series in g0 and the non-perturbative gluon
condensate,

⇤
1� 1

3
tr UP

⌅
=
⇧

n

cn ·g2n
0 +a4 ⇧

2

36

�
b0

⇥(g0)

⇥ ⇤�
⇧

GG
⌅

lattice
+ O(a6) ,

(12)
where b0 is the leading ⇥-function coe�cient. There is no
gauge-invariant operator of dimension 2 and therefore the or-
der a2 term is missing in Eq. (12). For small lattice spacing a,

the perturbative series is much larger than the non-perturbative
gluon condensate, and its determination requires the subtraction
of the perturbative series from the high accuracy Monte Carlo
data of the plaquette. The cn expansion coe�cents can be deter-
mined to high order using stochastic perturbation theory [96].
This procedure requires the investigation of Borel summation
of the high order terms in the perturbative expansion since the
coe�cients cn are expected to diverge in factorial order and
one has to deal with the well-known renormalon issues. The
methodology has been extensively studied in pure Yang-Mills
theory on the lattice [97].

It will be very important to undertake similar investigations
of the non-perturbative gluon condensate in the sextet model
with full fermion dynamics. We hope to return to this problem
in the near future.

Summary and outlook

We have shown that the chiral condensate and the mass spec-
trum of the sextet model are consistent with chiral symmetry
breaking in the limit of vanishing fermion mass. In contrast,
sextet fermion mass deformations of spectral properties are not
consistent with leading conformal scaling behavior near the
critical surface of a conformal theory. Our new results are rec-
onciled with recent findings of the sextet ⇥-function [3], if the
model is close to the conformal window with a very small non-
vanishing ⇥-function. This leaves open the possibility of a light
scalar state with quantum numbers of the Higgs impostor. The
light Higgs-like state could emerge as the pseudo-Goldstone
dilaton from spontaneous symmetry breaking of scale invari-
ance. Even without association with the dilaton, the scalar
Higgs-like state can be light if the sextet gauge model is very
close to the conformal window. A new Higgs project of sex-
tet lattice simulations was outlined to resolve these important
questions. Plans include the determination of the S parameter
and the sextet confining force with results on the string tension
already reported, strongly favoring the ⌥SB hypothesis [98].
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
tensor, �

�
µ
µ

⇥
NP
=

⇥(�)
4�

�
Ga
µ⌅G

aµ⌅
⇥

NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,

�
�
µ
µ

⇥
NP
=

⇥(�)
4�

Ga
µ⌅G

aµ⌅ � ⌅0|⇥(�)
4�

Ga
µ⌅G

aµ⌅|0⇧PT . (8)

The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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Figure 8: The linear fit is shown to the mass of the 0++ f0 meson from the
connected part of correlator I in Table 1 of [89]. For comparison, the scPion
which is the parity partner of the f0 meson in the correlator is replotted with
its fit from Figure 4 (magenta color). In the continuum limit, the mass of the
non-Goldstone scPion will vanish and the f0 state could become light close to
the conformal window. The disconnected part of the correlator is required to
resolve this issue.

fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
minology, random sources have to be used with noise reduction.

A very interesting further challenge and complication is the
existence of two types of distinct 0++ scalar mesons. One of
them is the composite fermion state and the other is the scalar
glueball with the same quantum number. In dynamical sex-
tet simulations, these two types of state will mix with an ob-
servable spectrum of scalar mesons which will require a well-
chosen variational operator set to disentangle the scalar state.
This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.

Staggered fermions present an additional complication from
the contribution of pairs of pseudoscalar meson taste channels
contributing to the scalar meson correlator. To be a physical
state, the scalar meson f0 has to be taste singlet. Taste selection
rules then require that the f0 meson couples only to pairs of
pseudoscalar mesons of the same taste. We have shown earlier
in Section 4 that the pion taste multiplet splits into the Gold-
stone state and a variety of higher-lying non-Goldstone states,
all degenerate with vanishing mass in the continuum limit. In
the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].

6.2. The Higgs particle and the dilaton

If the sextet model is very close to the conformal window
with a small but nonvanishing ⇥-function, a necessary condition

is satisfied for spontaneous breaking of scale invariance gen-
erating the light pseudo-Goldstone dilaton state. The model,
as we argued earlier, is also consistent with chiral symmetry
breaking (⌃SB) with the minimal Goldstone pion spectrum re-
quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
ever, a light Higgs-like scalar could emerge near the confor-
mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,

 µDµ = �µµ =
⇥(�)
4�

Ga
µ⌅G

aµ⌅ . (4)

Although �(µ) and Ga
µ⌅Gaµ⌅ depend on the renormalization

scale µ, the trace of the energy-momentum tensor is scheme in-
dependent after renormalization. In the sextet model, the mass-
less fermions are in the two-index symmetric representation of
the SU(3) color gauge group. The gluon fields are in the adjoint
representation with Ga

µ⌅, a = 1, 2, ...8. We will assume that the
perturbative parts of the composite gauge operator Ga

µ⌅Gaµ⌅ and
�
µ
µ are removed in Eq. (4) and only the non-perturbative (NP)

infrared part will be considered in what follows.
The dilaton coupling f⇧ is defined by the matrix element

⌅0|�µ⌅(x)|⇧(p)⇧ = f⇧
3

(pµp⌅ � gµ⌅p2)e�ipx (5)

with p2 = m2
⇧ for the on-shell dilaton state ⇧(p). From the

divergence of the dilatation current in Eq. (4) we get

⌅0| µDµ(x)|⇧(p)⇧ = f⇧m2
⇧e�ipx . (6)

The subtracted non-perturbative part of the energy-momentum
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µ⌅G
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NP
, (7)

is defined by removing the perturbative part of the gluon con-
densate in the vacuum,
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The lattice implementation of the subtraction procedure will be
briefly described after the derivation of the PCDC relation.
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fermion-line disconnected contributions from the hairpin dia-
grams. To evaluate disconnected quark loops with zero mo-
mentum, we need to sum over propagators from sources at each
spatial location for a given time slice. To avoid the very costly
O(V) inversions to compute all-to-all propagators in lattice ter-
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existence of two types of distinct 0++ scalar mesons. One of
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tet simulations, these two types of state will mix with an ob-
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This further underlines the room left for a light scalar state to
emerge in the spectrum. It is also entirely possible that careful
lattice calculations will shut down the Higgs interpretation.
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the continuum limit only the taste singlet states (physical states)
are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
states remain light and create complicated threshold e⇥ects.
This complication is present in the f0 correlator masked by the
physical two-pion intermediate state [95].
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lattice calculations will shut down the Higgs interpretation.
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in Section 4 that the pion taste multiplet splits into the Gold-
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are expected to have the correct masses from the U(1) axial
anomaly which is itself a taste singlet. The other non-singlet
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quired for electroweak symmetry breaking and the Higgs mech-
anism. The very small beta function (walking) and ⌃SB are not
su⇤cient to guarantee a light dilaton state if scale symmetry
breaking and ⌃SB are entangled in a complicated way. How-
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mal window as a composite state, not necessarily with dilaton
interpretation. To understand the important role of the non-
perturbative gluon condensate in the partially conserved dilata-
tion current (PCDC) relation and its related dilaton implica-
tions, lattice simulations of the non-perturbative gluon conden-
sate will be needed near the conformal window.

For discussion of the PCDC relation constraining the proper-
ties of the dilaton, we will closely follow the standard argument
like in [70, 73, 74]. We will also show how non-perturbative lat-
tice methods can explore the implications of the PCDC relation
when applied to the sextet model.

In strongly interacting gauge theories, like the sextet model
under consideration, a dilatation current Dµ = �µ⌅x⌅ can be
defined from the symmetric energy-momentum tensor �µ⌅. Al-
though the massless theory is scale invariant on the classical
level, from the scale anomaly the dilatation current has a non-
vanishing divergence,
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇤aTa/v

⇥
, with covariant derivative DµU ⇥

�µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⌅ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇤
v

H W+
µ W�µ +

m2
Z r⇤
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇤
v2 H2 W+

µ W�µ +
m2

Z s⇤
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇤ = s⇤ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇤�F⇥)2

16⇤2v2

⇧
    ⌥�4r2

t m2
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����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇤�F⇥) , (4)

where �M2
H

(4⇤�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇤�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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Results: scalar glueball spectrum

• The scalar glueball mass 
decreases with the bare fermion 
mass

• it is expected to become 
independent of mf in the 
quenched limit

• at light quark mass and on small 
volumes it is consistent with the 
mass of a fermionic bound state                         
[talk by T.Yamazaki 3F]

• finite volume effects and mixing 
with a light scalar fermionic state 
need to be better investigated

Pseudoscalar and vector data are taken from LatKMI, PRD86(2012)054506
Scalar data are taken from LatKMI, arxiv:1305.6006

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
am

f

0

0.2

0.4

0.6

0.8

1

a
M

G

L=18
L=24
L=30
L=36
π (L=30)
ρ (L=30)
σ (L=30)

glueball
Rinaldi latKMI talk



10 

QCD like 

Rescaled to a 
common lattice 
spacing 

WORKS! 

Scaling of mode number for Nf=4 

JHEP 1307 (2013) 061 

8 

Scaling of eigenvalue density in  
chirally broken systems 

          chiral  
condensate 

IR UV 

UVFP 
�m ! 0

⇢(0) 6= 0

1 + �m =
4

↵+ 1

⌫(�) / �1+↵(�)

Fit: 

(in limited range) 

�m ! 3

↵ ! 0

(not  
physical) 

Boulder group:
Cheng  talk
Hasenfratz
Petropoulos
Schaich

light Higgs near conformality (dilaton-like?) Nf=8

it looks successful



10 

QCD like 

Rescaled to a 
common lattice 
spacing 

WORKS! 

Scaling of mode number for Nf=4 

JHEP 1307 (2013) 061 

8 

Scaling of eigenvalue density in  
chirally broken systems 

          chiral  
condensate 

IR UV 

UVFP 
�m ! 0

⇢(0) 6= 0

1 + �m =
4

↵+ 1

⌫(�) / �1+↵(�)

Fit: 

(in limited range) 

�m ! 3

↵ ! 0

(not  
physical) 

Boulder group:
Cheng  talk
Hasenfratz
Petropoulos
Schaich

light Higgs near conformality (dilaton-like?) Nf=8

"walking" chirally-broken or strongly-coupled IR conformal ? 

sensitive to  
  gauge coupling 

large over  
  large scales 

weaker coupling 

stronger coupling 

little dependence 
  on  

Scaling of mode number for Nf=8 

21 

more work needed

it looks successful



Lattice simulations with eight flavors of domain wall 

fermions in SU(3) gauge theory 

T. Appelquist, R. C. Brower, M. I. Buchoff, M. Cheng, S. D. Cohen, G. T. Fleming, J. Kiskis, M. F. Lin, E. T. Neil,  
J. C. Osborn, C. Rebbi, D. Schaich, C. Schroeder, S. Syritsyn, G. Voronov, P. Vranas, and J. Wasem  

Presenter: Meifeng Lin (Argonne National Laboratory)  
meifeng@alcf.anl.gov 

Abstract 

With the discovery of a Higgs-like boson at the Large Hadron Collider, the imminent task for the study of the 
beyond Standard Model theories is to find the candidate theories that may produce a light scalar particle to be 
consistent with the experimental observation. In the context of non-perturbative lattice gauge theory simulations, 
one of the first steps is to find possible non-QCD like behaviors in these theories. Over the past few years, the 
Lattice Strong Dynamics (LSD) Collaboration has worked extensively on the SU(3) gauge theories with many 
flavors of degenerate domain wall fermions, and found some interesting behaviors in theories of 6 and 10 
flavors. Here we will present some latest results by the LSD collaboration from lattice simulations with 8 flavors 
of domain wall fermions in the SU(3) fundamental representation.  

Simulation Setup 

a mf β L3 × T  Ls  MP L a mres (×10-3) 
0.010 1.95 323 × 64 16 5.9(6) 2.859(5) 
0.015 1.95 323 × 64 16 7.2(2) 2.939(3) 
0.020 1.95 323 × 64 16 8.3(4) 3.014(5) 
0.025 1.95 323 × 64 16 9.4(3) 3.104(8) 
0.030 1.95 323 × 64 16 10.5(3) 3.210(6) 

! We use the domain wall fermion formulation for its 
good chiral symmetry.  

! The residual chiral symmetry breaking parameter, 
amres  is determined to be much smaller than the 
input quark masses.  

! The total effective quark mass is given by           
amq = amf + amres  

! The Iwasaki gauge action is used. The gauge 
coupling β was chosen to have a UV cutoff scale (if 
the theory is confining) to be roughly 5 times the 
vector meson mass.  

! Setup is similar to previous Nf=2, 6, 10 simulations. 

Hadron Spectrum 

! We computed the hadron two-point correlators using Point (P) and Coulomb gauge fixed Wall (W) sources, 
and constructed all four combinations, W-P, P-P, W-W and P-W.  

! Combined fits were performed to all four correlators, using fit ranges appropriate for each correlator.  

! The measurements were done every 10 MD trajectories, with 2 source locations, tsrc = 0 and 32, on each 
configuration.  

! Number of configurations used for measurements ranges from 75 to 150.  

! Standard jackknife procedure was used in the analysis, with block size of 5 measurements, equivalent to 50 
trajectories to partially account for autocorrelations. Autocorrelations may be as long as 150 trajectories, so 
our errors may be underestimated by 70%. Improved error analysis is ongoing.  

Representative Effective Masses.   

! We determined the masses and decay constants for the pseudoscalar, vector and axialvector mesons, to see 
if the behavior of the spectrum is different from QCD.  

!  If the theory is QCD-like, the fermion mass dependence of the spectrum can be described by Chiral 
Perturbation Theory(ChPT), provided that pseudoscalar meson mass is small compared to the chiral 
symmetry breaking scale. Our masses are too heavy to apply ChPT. We resort to empirical polynomial forms: 

!  If the theory is approximately scale-invariant (conformal), in infinite volume, it is deformed only by the finite 
fermion mass, the mass dependence is governed by the anomalous dimension at the fixed point, γ*.  

MP
2 = bPmf + cPmf

2 +...
MV ,A = aM + bMmf +...
FP,V ,A = aF + bFmf +...

MP
2 =CPmf

2/(1+γ*) +...

MV ,A =CMmf
1/(1+γ*) +...

FP,V ,A =CFmf
1/(1+γ*) +...

If theory is QCD-like If theory has approximate 
scale invariance  

Polynomial Fits vs. Conformal Fits 

! As the lightest point may suffer from large finite volume effect, we exclude it from the fits. 
! For the QCD-like fits, including the quadratic term for MP

2 keeps the d.o.f same as others.  
! We exclude FA from the analysis due to its large statistical errors.  

State C γ* 
P 2.7(2) 0.63(4) 
V 2.5(2) 0.91(6) 
A 3.3(2) 0.91(6) 

State C γ* 
P 0.26(11) 1.0(5) 
V 0.17(4) 2.1(6) 

Polynomial/Linear Fit 

Linear Fit 

Power-law Fit 

Power-law Fit 

! The quality of fits is comparable between the polynomial fits and the power-law fits, except for the 
pseudoscalar, which favors the polynomial fit. 

! The results for the anomalous dimension γ* from individual fits are consistent with 1, except for the 
pseudoscalar, which favors a smaller value.  

! The distinct characteristic of the pseudoscalar may be an indication of spontaneous chiral symmetry breaking.  

! The universality of γ* in other channels resembles conformal behavior.  

"  The theory may be chirally broken, and walking?  

Chiral Condensate 

Acknowledgments 
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! A large chiral condensate (relative to the electroweak symmetry breaking scale F) is needed in the composite 
Higgs theories to generate large-enough quark masses and satisfy the constraint from the flavor-changing 
neutral currents. 

! From GMOR relation, there are three ratios that 
give rise to <ψψ>/F3 in the chiral limit: 

! Each of the ratios is divided by the corresponding ratio 
with Nf  = 2, to see the condensate enhancement 
compared to QCD. 

! The 8-flavor results (middle) are qualitatively similar to 
the 6-flavor results (left):  All three ratios seem to 
converge to a common value at light quark masses.  

! The 10-flavor results (right) are qualitatively different, with 
the three ratios converging at heavy masses and 
diverging at light masses.  
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! The quality of fits is comparable between the polynomial fits and the power-law fits, except for the 
pseudoscalar, which favors the polynomial fit. 

! The results for the anomalous dimension γ* from individual fits are consistent with 1, except for the 
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! A large chiral condensate (relative to the electroweak symmetry breaking scale F) is needed in the composite 
Higgs theories to generate large-enough quark masses and satisfy the constraint from the flavor-changing 
neutral currents. 

! From GMOR relation, there are three ratios that 
give rise to <ψψ>/F3 in the chiral limit: 
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compared to QCD. 
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diverging at light masses.  

R(1)N f
=

<ψψ >
FP
3

!

"
#

$

%
&
N f

R(2)N f
=
(MP

2 / 2mq )
3/2

<ψψ >1/2
'

(
)

*

+
,
N f

R(3)N f
=

MP
2

2mqFP

!

"
##

$

%
&&
N f

Lattice simulations with eight flavors of domain wall 

fermions in SU(3) gauge theory 

T. Appelquist, R. C. Brower, M. I. Buchoff, M. Cheng, S. D. Cohen, G. T. Fleming, J. Kiskis, M. F. Lin, E. T. Neil,  
J. C. Osborn, C. Rebbi, D. Schaich, C. Schroeder, S. Syritsyn, G. Voronov, P. Vranas, and J. Wasem  

Presenter: Meifeng Lin (Argonne National Laboratory)  
meifeng@alcf.anl.gov 

Abstract 

With the discovery of a Higgs-like boson at the Large Hadron Collider, the imminent task for the study of the 
beyond Standard Model theories is to find the candidate theories that may produce a light scalar particle to be 
consistent with the experimental observation. In the context of non-perturbative lattice gauge theory simulations, 
one of the first steps is to find possible non-QCD like behaviors in these theories. Over the past few years, the 
Lattice Strong Dynamics (LSD) Collaboration has worked extensively on the SU(3) gauge theories with many 
flavors of degenerate domain wall fermions, and found some interesting behaviors in theories of 6 and 10 
flavors. Here we will present some latest results by the LSD collaboration from lattice simulations with 8 flavors 
of domain wall fermions in the SU(3) fundamental representation.  

Simulation Setup 

a mf β L3 × T  Ls  MP L a mres (×10-3) 
0.010 1.95 323 × 64 16 5.9(6) 2.859(5) 
0.015 1.95 323 × 64 16 7.2(2) 2.939(3) 
0.020 1.95 323 × 64 16 8.3(4) 3.014(5) 
0.025 1.95 323 × 64 16 9.4(3) 3.104(8) 
0.030 1.95 323 × 64 16 10.5(3) 3.210(6) 

! We use the domain wall fermion formulation for its 
good chiral symmetry.  

! The residual chiral symmetry breaking parameter, 
amres  is determined to be much smaller than the 
input quark masses.  

! The total effective quark mass is given by           
amq = amf + amres  

! The Iwasaki gauge action is used. The gauge 
coupling β was chosen to have a UV cutoff scale (if 
the theory is confining) to be roughly 5 times the 
vector meson mass.  

! Setup is similar to previous Nf=2, 6, 10 simulations. 

Hadron Spectrum 

! We computed the hadron two-point correlators using Point (P) and Coulomb gauge fixed Wall (W) sources, 
and constructed all four combinations, W-P, P-P, W-W and P-W.  

! Combined fits were performed to all four correlators, using fit ranges appropriate for each correlator.  

! The measurements were done every 10 MD trajectories, with 2 source locations, tsrc = 0 and 32, on each 
configuration.  

! Number of configurations used for measurements ranges from 75 to 150.  

! Standard jackknife procedure was used in the analysis, with block size of 5 measurements, equivalent to 50 
trajectories to partially account for autocorrelations. Autocorrelations may be as long as 150 trajectories, so 
our errors may be underestimated by 70%. Improved error analysis is ongoing.  

Representative Effective Masses.   

! We determined the masses and decay constants for the pseudoscalar, vector and axialvector mesons, to see 
if the behavior of the spectrum is different from QCD.  

!  If the theory is QCD-like, the fermion mass dependence of the spectrum can be described by Chiral 
Perturbation Theory(ChPT), provided that pseudoscalar meson mass is small compared to the chiral 
symmetry breaking scale. Our masses are too heavy to apply ChPT. We resort to empirical polynomial forms: 

!  If the theory is approximately scale-invariant (conformal), in infinite volume, it is deformed only by the finite 
fermion mass, the mass dependence is governed by the anomalous dimension at the fixed point, γ*.  

MP
2 = bPmf + cPmf

2 +...
MV ,A = aM + bMmf +...
FP,V ,A = aF + bFmf +...

MP
2 =CPmf

2/(1+γ*) +...

MV ,A =CMmf
1/(1+γ*) +...

FP,V ,A =CFmf
1/(1+γ*) +...

If theory is QCD-like If theory has approximate 
scale invariance  

Polynomial Fits vs. Conformal Fits 

! As the lightest point may suffer from large finite volume effect, we exclude it from the fits. 
! For the QCD-like fits, including the quadratic term for MP

2 keeps the d.o.f same as others.  
! We exclude FA from the analysis due to its large statistical errors.  

State C γ* 
P 2.7(2) 0.63(4) 
V 2.5(2) 0.91(6) 
A 3.3(2) 0.91(6) 

State C γ* 
P 0.26(11) 1.0(5) 
V 0.17(4) 2.1(6) 

Polynomial/Linear Fit 

Linear Fit 

Power-law Fit 

Power-law Fit 

! The quality of fits is comparable between the polynomial fits and the power-law fits, except for the 
pseudoscalar, which favors the polynomial fit. 

! The results for the anomalous dimension γ* from individual fits are consistent with 1, except for the 
pseudoscalar, which favors a smaller value.  

! The distinct characteristic of the pseudoscalar may be an indication of spontaneous chiral symmetry breaking.  

! The universality of γ* in other channels resembles conformal behavior.  

"  The theory may be chirally broken, and walking?  

Chiral Condensate 
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! A large chiral condensate (relative to the electroweak symmetry breaking scale F) is needed in the composite 
Higgs theories to generate large-enough quark masses and satisfy the constraint from the flavor-changing 
neutral currents. 

! From GMOR relation, there are three ratios that 
give rise to <ψψ>/F3 in the chiral limit: 

! Each of the ratios is divided by the corresponding ratio 
with Nf  = 2, to see the condensate enhancement 
compared to QCD. 

! The 8-flavor results (middle) are qualitatively similar to 
the 6-flavor results (left):  All three ratios seem to 
converge to a common value at light quark masses.  

! The 10-flavor results (right) are qualitatively different, with 
the three ratios converging at heavy masses and 
diverging at light masses.  
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light Higgs near conformality (dilaton-like?) Nf=8

LSD group   Meifeng Lin poster



Chiral condensate from Dirac eigenmode number

Address valence mass effects in
⌦
  

↵

by analyzing the eigenvalues of the massless Dirac operator

Compare ⇢(�) on different volumes with fixed sea mass:

Good agreement up to expected finite-volume effects,
and topological zero-mode effects in first bin

Extract ⌃ms ⌘ ⇡⇢(�! 0) from derivative of mode number ⌫ ⇠ R
⇢ d�

David Schaich (Colorado) USBSM NF = 8 Lattice 2013, 29 July 11 / 17

light Higgs near conformality (dilaton-like?) Nf=8

Schaich talk
with
Boulder group
and USBSM INCITE

going for large volumes

unsettled question: does the Nf=8 model hide a Higgs impostor?



Higgs as a pseudo-Goldstone boson
• strong dynamics identifying the Higgs as a scalar pseudo-Nambu-Goldstone boson 
  (PNGB)

• in strongly coupled gauge theories with fermions in real or pseudo-real reps of the gauge 
  group Goldstone scalars emerge

• this PNGB Higgs mechanism plays a critical role in little Higgs models

• in little Higgs models global symmetries and their symmetry breaking patterns cancel the
   quadratic divergences of the Higgs mass with little fine tuning to ~ 10 TeV

• this provides phenomenologically interesting models with weakly coupled extensions of the
  SM with PNGB Higgs scalars

• project to demonstrate that viable UV complete theories exist with strong gauge sector 
  replacing the weakly coupled elementary (mexican hat) Higgs.

23



• SU(2) color gauge group with Nf=2 fundamental massless fermions

• additional steril flavors with Nf > 2 can be added to drive the theory close to or into the 
   conformal window (?)

• pseudo-real SU(2) color group enlarges SU(Nf)xSU(Nf) vector-axial vector symmetry to 
  SU(2Nf) flavor symmetry combining 2Nf left/right 2-component chiral spinors

• most attractive channel breaks SU(2Nf) to Sp(2Nf). If explicit masses are given to Nf-2 
   flavors the remaining 2 massless flavors yield SU(4)/Sp(4) coset with 5 Goldstone bosons
   demonstrated in lattice simulation! Lewis,Pica,Sannino

• isotriplet pseudo-scalars (techni-pions) and two isosinglet scalars

• top quark loop breaks symmetry explicitly and lifts the masses of the two scalars

• the lighter is the composite Higgs (PC=+1) 
  and heavier is scalar dark matter candidate (PC=-1)

Minimal PNGB model:

Higgs as a pseudo-Goldstone boson

24



• SU(2) color gauge group with Nf=2 fundamental massless fermions

• additional steril flavors with Nf > 2 can be added to drive the theory close to or into the 
   conformal window (?)

• pseudo-real SU(2) color group enlarges SU(Nf)xSU(Nf) vector-axial vector symmetry to 
  SU(2Nf) flavor symmetry combining 2Nf left/right 2-component chiral spinors

• most attractive channel breaks SU(2Nf) to Sp(2Nf). If explicit masses are given to Nf-2 
   flavors the remaining 2 massless flavors yield SU(4)/Sp(4) coset with 5 Goldstone bosons
   demonstrated in lattice simulation! Lewis,Pica,Sannino

• isotriplet pseudo-scalars (techni-pions) and two isosinglet scalars

• top quark loop breaks symmetry explicitly and lifts the masses of the two scalars

• the lighter is the composite Higgs (PC=+1) 
  and heavier is scalar dark matter candidate (PC=-1)

Minimal PNGB model:

Higgs as a pseudo-Goldstone boson
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TeV

resonances in 1-2 TeV range?

observed Higgs-like at 125 GeV

EW self-energy

PNGB scenario

massless scalar pseudo-Goldstone

scalar dark matter



Studies of supersymmetric theories on the lattice

25

Lattice 2013 talks:
Piemonte, Munster, Steinhauer, Weir



Studies of supersymmetric theories on the lattice

•New theoretical formulations
•improved algorithms                                   
•increased computer power

pioneering studies of N=1 and 
N=4 super Yang-Mills

N=1 super Yang-Mills is supersymmetric pure gauge QCD

first step to super QCD    can play the role of non-perturbative SUSY breaking in high scale 
hidden sector

0 0.02 0.04 0.06 0.08 0.1 0.12
mres
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<λ
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nonlinear fit L=8
nonlinear fit L=16

beta=2.4
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Ls=32

Ls=24
Ls=32

Ls=28(I)

Ls=24

Ls=16Gaugino condensate vs residual mass
SU(2) N=1 super Yang-Mills  
DW fermions

next goal is super QCD investigating 
the simplest system with metastable 
vacua  (four colors and five flavors) Giedt, Catterall
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Studies of supersymmetric theories on the lattice

26

SUSY and the LHC

- If SUSY is correct explanation for what we are seeing at LHC, it must be broken. 

- That breaking (because of no go theorems etc) must be non-perturbative in character and hence the lattice potentially 
   offers a good tool to understand it. 

-  Low energy constants that encode the SUSY breaking in any effective low energy SUSY model (e.g. MSSM) are 
   determined by non perturbative quantities in the sector that breaks SUSY (e.g. super QCD). 

- Thus measuring these condensates via lattice simulation helps to constrain the parameter space of any BSM SUSY low
   energy theory. Again this could be the MSSM or something else. 



Non-perturbative N=4 super Yang-Mills

• holographic dilaton connection in pursuing light Higgs?
    - dilaton is simple to realize  (translations along flat directions)
    - N=4 lattice action has flat directions (protected by exact lattice supersymmetry)

• exploring holographic connections between gauge theories and string/gravity theories

Studies of supersymmetric theories on the lattice

26
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• near CW S-parameter is not 
   increasing according to the naive 
   scaling  based on QCD and earlier
   expected by phenomenologists

•  without non-perturbative BSM 
    lattice work phenomenology is 
    misinforming in model building

LSD

S-parameter

1.4. The role of a composite scalar and the fundamental Higgs boson limit
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Figure 1.3: Experimental allowed regions and theoretical predictions for the S and T parameters in the Higgsless
SM for 100 < � < 3000 GeV (Eqs. (1.3.25)). The experimental allowed regions are chosen as in Ref. [34]. For the
definition of the (0, 0) point see the footnote 1.6. For the theoretical prediction we have used the most updated
value of the top mass mt = 173.3 GeV [35].

of the SM Higgs boson on the Ŝ and T̂ parameters of Eqs. (1.3.26) is exactly to cut-o⇥ the
logarithms by substituting the scale � with the Higgs boson massmh. In Fig. 1.3 we have plotted
the experimental allowed region in the (S, T ) plane1.6 compared with the theoretical predictions
for � < 3 TeV (or equivalently mh < 3 TeV). It is simple to see that the experimental bounds
on S and T imply � � 200 GeV that fixes a cuto⇥ for the Higgsless SM of the order of the
EW scale. As we will see in the next section, the same bound can be read mh � 200 GeV for
the SM Higgs boson mass. The plot in Fig. 1.3 only contains the logarithmic contributions of
Eqs. (1.3.25). It turns out that introducing also the finite terms that vanish in the limit mh � 0
the straight line in Fig. 1.3 acquires a slight bending shape slightly changing the limit on the
Higgs boson mass. However, a precise determination of the limits on the Higgs boson mass
requires a global fit to all the EWPO. The result of the global fit is [3]

mh = 90+27
�22 GeV , mh < (145, 149, 194) GeV at (90, 95, 99)% CL . (1.3.27)

1.4 The role of a composite scalar and the fundamental Higgs
boson limit

In this section we generalize the Higgsless SM discussed in the previous section adding a
scalar field, coupled to the SM fields through a general e⇥ective Lagrangian. We will see that
for a particular choice of the parameters the scalar coincides with the SM Higgs boson, i.e. can
be embedded with the GBs into a linear doublet of SU(2)L. In this case the Lagrangian will
reduce exactly to the SM Lagrangian.

1.6The origin of the axes in the (S, T ) plane is chosen in such a way that (SSM, TSM)
���
mh=150 GeV ,mt=175 GeV

�
(0, 0). All the plots represent deviations from these values.
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LSD group with several 
phenomenological explorations

Toolset and its phenomenological applications
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FIG. 3: Plot of MP /|↵k| cot � ' MP aPP vs. (MP /FP )2. The
error bars are statistical plus systematic. The red circles represent
the two-flavor data and the blue squares represent the six-flavor
data. The dashed line is the LO ⇥PT result (zero parameter fit).
Larger negative results correspond to more repulsive scattering.

The dashed line, representing the LO expression
�M2

P/16⇤
2F 2

P , is a reasonably good first approximation
to the data for both Nf = 2 and Nf = 6. For Nf = 2, the
data show that the effect of the NLO term is to make the
interaction more repulsive. The quantity in square brackets
in Eq. (23) is positive and of order unity within the range
shown. A fit to just MPaPP with µ = F leads to the
value b⇥rPP (µ = F ) = �4.67 ± 0.65+1.06

�0.05. Clearly there
is some cancelation between this term and the chiral loga-
rithm. Nonetheless, this b⇥rPP value (when combined with
the brM and brF values in Table I) is consistent with the brPP

value in Eq. (21).
For Nf = 6, the data is even closer to the LO dashed

line, suggesting that NLO perturbation theory in the form
of Eq. 23 might again be reliable. If this expression is
used to fit the Nf = 6 data, then the quantity in square
brackets is again positive and of order unity within the
range shown, but somewhat smaller in magnitude than for
Nf = 2. Since we don’t yet know the precise value of F
in lattice units for Nf = 6, we carry out the NLO fit using
the scale µ = 0.023a�1 (F for Nf = 2). The fit leads to
b⇥rPP (µ = 0.023a�1 ⇤ F ) = �7.81 ± 0.46+1.23

�0.56, larger
in magnitude than for Nf = 2. There is now more cance-
lation between this term and the chiral logarithm than for
Nf = 2.

The above values of b⇥rPP emerge from a fit of Eq. (23)
to each of the three lightest data points (corresponding to
mf = 0.01� 0.02), with a fixed choice µ = 0.023a�1 ⇤
F . A plot of the resultant value of b⇥rPP versus m (Fig. 4),
shows that b⇥rPP (µ = 0.023a�1 ⇤ F ) is relatively inde-
pendent of m for both Nf = 2 and Nf = 6 as expected
if NLO perturbation theory is reliable. The evident shift
going from Nf = 2 to Nf = 6 is interesting since this
quantity is contains LEC’s that enter into WW scattering
through Eq. (24).
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FIG. 4: Chiral parameter b⇥rPP versus fermion mass m for Nf =
2 and Nf = 6.

It is not yet clear whether this fit can be trusted for
Nf = 6, but even if it can, the resultant value for
br⇥PP (µ = 0.023a�1 ⇤ F ) determines only the combi-
nation of LECs in Eq. (24), which includes Lr

i (µ) values
not directly relevant to WW scattering. Further calcula-
tions will be necessary to isolate ��4(MH ,MP = Mds)
and ��5(MH ,MP = Mds) (Eq. (7)). This will then de-
scribe the effect of beyond-standard-model physics for a
range of PNGB masses MP .

SUMMARY AND DISCUSSION

Using lattice simulations, we have computed
pseudoscalar-pseudoscalar scattering in the maximal
isospin channel for an SU(3) gauge theory with two and
six fermion flavors in the fundamental representation.
Our calculation of the S-wave scattering length was then
related to the next-to-leading order (NLO) corrections
to WW scattering through the low-energy coefficients
of the chiral Lagrangian. For Nf = 2, our result for
the scattering length agreed with previous calculations,
showing an increase in repulsion due to the NLO correc-
tions. For WW scattering, we obtained an estimate for
��4(MH)+ ��5(MH) (Eq. (22)) describing deviations from
the standard model.

Six-flavor scattering showed a somewhat less repulsive
NLO interaction than its two-flavor counterpart for a fixed
ratio of the pseudoscalar mass to its decay constant. The
range of fermion masses employed so far does not allow a
clearly reliable use of chiral perturbation theory. Also, the
appearance of more terms in the hadronic chiral lagrangian
for six flavors does not allow the extraction of only the
combination of parameters entering WW scattering. Fur-
ther simulations of additional low-energy scattering param-
eters at lower fermion-mass values will be required to com-
plete this study.

WW scattering 
(what if cross section gets stronger than expected from weakly coupled SM Higgs?)

LSD • potentially important for LHC14 
   machine upgrade

• based on equivalence theorem 
   and chiPT
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Dark matter
lattice BSM phenomenology of dark matter
LSD

• dark matter candidates 
   electroweak active in the application

• there is room for electroweak singlet
   dark matter particles (SU(2) PNGB)

Dark matter
self-interacting?

The Total Energy of the Universe:

Vacuum Energy (Dark Energy)  ~  67 %
Dark Matter                                ~  29 %
Visible Baryonic Matter              ~    4 %

T. Appelquist, R. C. Brower, M. I. Buchoff, M. Cheng, S. D. Cohen
,
 G. T. Fleming, J. Kiskis, M. F. Lin, E. T. Neil, J. C. Osborn, C. Rebbi, D. Schaich, C. Schroeder

,
 S. Syritsyn, G. Voronov, P. 

Vranas, and J. Wasem
 
 (Lattice Strong Dynamics (LSD) Collaboration) 

Buchoff talk • Nf=2   Qu=2/3 Qd = -1/3
   udd neutral dark matter candidate

• Nf=6    3 replicas of Nf=2
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Kogut-Sinclair consistent with χSB phase transition

relevance in early cosmology

Third massive fermion flavor (electroweak singlet) dark matter?

finite temperature 
EW phase transition?Kogut-Sinclair

(Sinclair talk)

30

The chiral phase transition for QCD with sextet quarks D. K. Sinclair

trajectory runs at m= 0.02. We are currently increasing or plan to increase our run lengths at each
of these masses.

The chiral condensates for each mass decrease as β increases. More importantly, as β in-
creases, the mass dependence of these condensates becomes more pronounced. The decrease in the
chiral condensate with decreasing mass is such that it does appear that it will vanish in the chiral
limit for β sufficiently large. However, the β dependence of 〈ψ̄ψ〉 is sufficiently smooth at all the
masses of our simulations, that we would need a precise analytical form to perform a believable
chiral m→ 0 extrapolation to determine where it vanishes. This we do not have. Hence we examine
the (disconnected) chiral susceptibilities

χψ̄ψ =
V
T
[

〈(ψ̄ψ)2〉− (〈ψ̄ψ〉)2
]

(2.1)

where V is the spatial volume of the lattice and T is the temperature. ψ̄ψ is a lattice averaged
quantity. Because we only have stochastic estimators for ψ̄ψ (5 per trajectory), we obtain un-
biased estimators of (ψ̄ψ)2 as the products of 2 different estimators of ψ̄ψ for the same gauge
configuration.

Figure 1: Chiral susceptibilities on a 163× 8 lattice.

The chiral susceptibility diverges at the chiral phase transition for zero quark mass. At small
but finite mass, it shows a clear peak which becomes sharper as m decreases. Extrapolating the
position of said peak to m= 0 yields βχ , the β value of the chiral phase transition. Figure 1 shows
the chiral susceptibilities from our runs on 163×8 lattices. What is clear from this plot is that the

3
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Kohtaroh Miura (KMI, Nagoya Univ.) String Tension vs Critical Temperature in Walking Regime
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Duality at finite T : Gursoy et.al. arXiv:1006.5461.
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Summary and Outlook
  
Conformality ?
    Nf=2 SU(2) MWT (illustration) 
      Nf=12 SU(3) ???

Light Higgs near conformality     
     dilaton and/or light scalar close to conformal window?
      running (walking) coupling
      chiral condensate
      finite size scaling and spectroscopy

Light composite Higgs in the PNGB scenario   
    Two fermions in fundamental rep with SU(2) color 
    
SUSY

Phenomenology
     S-parameter
       WW scattering
       dark matter
       EW phase transition

We have 1.5 Higgs impostor candidate(s) 
more coming? Voronov talk Nf=6 SU(2) ?
a lot more work is needed to investigate viability  
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Confining force with fundamental and sextet fermions Kieran Holland
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Figure 5: Fits of the string tension for Nf = 2 sextet theory: (left) from V (r) fits including �/r and (right) from linear
V (r) fits without �/r. In the right plot, the fitted conformal exponent 1/(1+ ⇥) is consistent with zero, hence the curve
is omitted.

mass-dependence of ⇤1/2, using both linear and conformal power-like m1/(1+⇥) forms. As before,
we consider both parametrizations of V (r). We see in fact very little mass dependence. With
or without the Coulomb term when extracting ⇤ , the fitted conformal exponents are respectively
1/(1+ ⇥) = 0.04(4) and 0.00(6), giving unacceptable values of the anomalous dimension ⇥ . (A
negative value for the exponent would be unphysical and simply reflects statistical fluctuations.)
Linear extrapolations give a clear non-zero value for the string tension in the chiral limit. This
suggests that the sextet theory appears to be non-conformal, which is consistent with our analysis
of the mass spectrum.

2.4 Force

In fitting the potential V (r), correlation between data at different r was not taken into account,
given the instability of the covariance matrix without very large statistics. This can be partially
cured by extracting the force F(r) directly from the Wilson loops W (r, t). We construct an effective
force F(r⇥, t) = V (r+1, t)�V (r, t), which is fitted at sufficiently large time t to a constant. In the
fit, the covariance matrix includes correlation of the data both in r and in t. The naive definition
of the force location is r⇥ = r+ 1/2, which we improve by taking into account the propagator for
the improved action. For example, in our action r = 4 corresponds to r⇥ = 4.45787, at larger r the
deviation from half-integer quickly vanishes. If a given theory is conformal, at large r the force
should have a pure 1/r2 behavior, such that the renormalized coupling �qq(r) = r2F(r)/CF flows
to an infrared fixed point with increasing r. Alternatively, linear behavior in the potential V (r) at
intermediate separation corresponds to a constant force F(r).

In Figure 6 we show the force as extracted from the largest volume at the lightest mass for both
the Nf = 2 sextet and Nf = 12 fundamental theories (we find similar behavior at larger mass). As
the separation r⇥ increases, the force appears to flow to a constant, consistent with the independently
determined value of ⇤ from the potential V (r). We compare with perturbation theory, starting the
RG flow of �qq from its directly measured value at r⇥ = 3.42522. The perturbative prediction of
a quickly decreasing force is not supported by the data, and the renormalized coupling continues
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linear behavior in fermion 
potential at larger separation

string tension insensitive to
fermion mass

non-zero in chiral limit

further evidence theory
is not conformal

light Higgs near conformality (dilaton-like?)

(1)   χSB and confinement

Holland talk

✓

sextet
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light composite scalar - Higgs impostor

Kieran Holland, Lattice 2013
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 Triplet and singlet masses from 0++ correlators  New Ricky Wong Mon 6:30

flavor singlet scalar measured on
same ensembles

challenge: disconnected diagrams

composite scalar appears light

possible connection to nearby
conformal window

dilaton interpretation?

the statement that strongly-interacting theories are Higgs-less looks wrong

crucial issue in post-Higgs discovery era

light Higgs near conformality (dilaton-like?)



mf dependence of mσ in Nf = 12 arXiv:1305.6006

mσ from fit of D(t) with t = 4–8
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Reasonable signals with almost 10% statistical error
Systematic error from fit range dependence of D(t)
Finite volume effect under control ← 2 larger volumes agree
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same critical exponent 
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infinite volume conformal scaling violation analysis ?

conformal finite size scaling analysis and its scaling 
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Del Debbio and Zwicky

Asymptotic infinite volume limit has not been reached 
yet in important candidate models for conformal window

Strategy I:  L=∞ extrapolation first and then scaling test in m
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Confining force with fundamental and sextet fermions Kieran Holland

Given the determination of ⌅ at each fermion mass ma, we now examine the behavior in the
chiral limit ma ⇥ 0. In a conformal theory which has been deformed by a small fermion mass
m, quantities with mass dimension, such as particle masses and ⌅1/2, have a power-like behavior
µ m1/ym ,ym = 1+ ⇥ , where ⇥ is the anomalous dimension [11]. The critical exponent is universal
for all particle quantum numbers, and all mass gaps vanish in the chiral limit. Alternatively, if a
given theory is like QCD with spontaneously broken chiral symmetry, only the Goldstone bosons
are massless in the chiral limit, all other states are massive, and ⌅1/2 should be non-zero in the
chiral limit. In Figure 3 we show fits of the mass dependence of ⌅1/2, testing for QCD-like be-
havior (parametrized with a linear mass dependence) or conformal power-law behavior. The left
panel shows fits where ⌅ was determined from V (r) fits including the �/r term. Neither linear
nor power-like behavior describes all four data, hence ma = 0.025 is excluded. Using the three
smallest masses, the linear fit yields ⌅1/2a = 0.0338(23) in the chiral limit, whereas the power-like
conformal fit gives ⇥ = 0.92(12), however both fits are of very poor quality. If instead one uses
⌅ as determined from linear fits of V (r) at larger r only, the behavior is much improved. Data at
all four masses can be fitted, and both linear and power-like ansätze fit the data well. The linear
fit gives a chiral limit value ⌅1/2a = 0.0516(23), the power-like fit gives an anomalous dimension
⇥ = 1.17(11). However, this conformal fit is in very strong tension with the mass spectrum analysis.
For example, the pion mass dependence indicates a value ⇥ = 0.393(3) for the anomalous dimen-
sion, while the pion decay constant is best described with ⇥ = 0.214(16). Given this large violation
of universality of the critical exponent, we conclude the Nf = 12 fundamental theory appears to be
non-conformal.
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Figure 4: Fits of the potential V (r) for the Nf = 2 sextet theory, with and without the �/r term: (left) 483 � 96 at
ma = 0.003 and (right) 323 �64 at ma = 0.006.

2.3 Nf = 2 sextet

We next summarize our results for the Nf = 2 sextet model, where the method and analysis
are very similar to before. We have fewer large volumes and cannot empirically show that volume-
dependence of V (r) is negligible. Hence we analyze three ensembles: 483 � 96 at ma = 0.003,
and 323 �64 at ma = 0.005 and 0.006. The corresponding pion masses are approximately m⇤L =

6.5,5.6 and 6.2, with L the spatial size, giving some indication that volume-dependence should be
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Figure 5: Fits of the string tension for Nf = 2 sextet theory: (left) from V (r) fits including �/r and (right) from linear
V (r) fits without �/r

small. In Figure 4 we show fits of V (r), with and without the �/r term, for the smallest and largest
mass considered. On the largest volume, the data at larger separation are again well described
by purely linear behavior. In Figure 5 we show fits of the mass-dependence of ⇤1/2, using both
linear and conformal power-like m1/(1+⇥) forms. As before, we consider both parametrizations
of V (r). We see in fact very little mass dependence. With or without the Coulomb term when
extracting ⇤ , the fitted conformal exponents are respectively 1/(1+ ⇥) = 0.04(4) and �0.01(6),
giving unacceptable values of the anomalous dimension ⇥ . Linear extrapolations give a clear non-
zero value in the chiral limit. The potential has a distinct linear behavior at intermediate distance,
and the evidence is even stronger in this case that the sextet theory appears to be non-conformal.

2.4 Force

In fitting the potential V (r), correlation between data at different r was not taken into account,
given the instability of the covariance matrix without very large statistics. This can be partially
cured by extracting the force F(r) directly from the Wilson loops W (r, t). We construct an effective
force F(r⇥, t) = V (r+1, t)�V (r, t), which is fitted at sufficiently large time t to a constant. In the
fit, the covariance matrix includes correlation of the data both in r and in t. The naive definition
of the force location is r⇥ = r+ 1/2, which we improve by taking into account the propagator for
the improved action. For example, in our action r = 4 corresponds to r⇥ = 4.4578..., at larger r the
deviation from half-integer quickly vanishes. If a given theory is conformal, at large r the force
should have a pure 1/r2 behavior, such that the renormalized coupling �qq(r) = r2F(r)/CF flows
to an infrared fixed point with increasing r. Alternatively, linear behavior in the potential V (r) at
intermediate separation corresponds to a constant force F(r).

In Figure 6 we show the force as extracted from the largest volume at the lightest mass for both
the Nf = 2 sextet and Nf = 12 fundamental theories (we find similar behavior at larger mass). As
the separation r⇥ increases, the force appears to flow to a constant, consistent with the independently
determined value of ⇤ from the potential V (r). We compare with perturbation theory, starting the
RG flow of �qq from its directly measured value at r⇥ = 3.4252... The perturbative prediction of
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sextet simulations confining force at finite m  (LHC group)

1/1+γ ~0.04(4) ?    conformal γ~infinite would be needed 


