Hadron Spectroscopy Review

Christopher Thomas, Trinity College Dublin

thomasc@maths.tcd.ie

Lattice 2013, Mainz, 3rd August 2013

Outline

- Introduction
- Mesons
 - 'Single-meson' spectroscopy
 - Resonances etc
- Baryons
- Summary

Won't say much on precision determinations of low-lying states Concentrate on higher-lying / excited states / resonances – not all extrapolated in $a, m_{\pi'}$... |baryon number| = 0 and 1 Thank you for sending material and apologies if I don't cover your work More on scattering and resonances in Michael Döring's talk (next)

Relevant degrees of freedom? Role of gluons?

Relevant degrees of freedom? Role of gluons?

Relevant degrees of freedom? Role of gluons?

Exotic J^{PC} (**0**⁻⁻, **0**⁺⁻, **1**⁻⁺, **2**⁺⁻, ...) or flavour quantum numbers – can't just be a $q\bar{q}$ pair

Hadron Spectroscopy

Experiments

$$C_{ij}(t) = \sum_{n} \frac{e^{-E_n t}}{2 E_n} Z_i^{(n)} Z_j^{(n)*}$$

$$Z_i^{(n)} \equiv < 0 |\mathcal{O}_i|n>$$

Lattice SpectroscopyInterpolating operators
$$C_{ij}(t) = \langle 0 O_i(t) O_j^{\dagger}(0) 0 \rangle$$
 $\bar{\psi} \Gamma \psi$ $\epsilon^{abc} \psi_a \psi_b \psi_c$ $+ D_i$ $C_{ii}(t) = \sum \frac{e^{-E_n t}}{Z_i^{(n)} Z_i^{(n)*}}$ $Z_i^{(n)} = \langle 0 | O_i | n \rangle$

ે

Generalised Eigenvalue Problem / Variational Method

 $2 E_n$

 $C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$

 $\frac{2}{n}$

Matrix of correlators

Lattice SpectroscopyInterpolating operators
$$C_{ij}(t) = \langle 0 \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0 \rangle$$
 $\bar{\psi} \Gamma \psi$ $\epsilon^{abc} \psi_a \psi_b \psi_c$ $+\overleftrightarrow{D}_i$ $C_{ij}(t) = \sum_n \frac{e^{-E_n t}}{2 E_n} Z_i^{(n)} Z_j^{(n)*}$ $Z_i^{(n)} \equiv \langle 0 | \mathcal{O}_i | n \rangle$

Generalised Eigenvalue Problem / Variational Method

 $C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$

Matrix of correlators

$$\lambda^{(n)}(t) \to e^{-E_n(t-t_0)} \left[1 + O\left(e^{-\Delta E(t-t_0)} \right) \right]$$

Eigenvectors $\rightarrow Z^{(n)}$

Probe structure, spin i.d., ...

Lattice SpectroscopyInterpolating operators
$$C_{ij}(t) = \langle 0 O_i(t) O_j^{\dagger}(0) | 0 \rangle$$
 $\bar{\psi} \Gamma \psi$ $\epsilon^{abc} \psi_a \psi_b \psi_c$ $+ \overleftarrow{D}_i$ $C_{ij}(t) = \sum_n \frac{e^{-E_n t}}{2 E_n} Z_i^{(n)} Z_j^{(n)*}$ $Z_i^{(n)} \equiv \langle 0 | O_i | n \rangle$ Generalised Eigenvalue Problem / Variational Method

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

Matrix of correlators

$$\lambda^{(n)}(t) \to e^{-E_n(t-t_0)} \left[1 + O\left(e^{-\Delta E(t-t_0)} \right) \right]$$

Eigenvectors $\rightarrow Z^{(n)}$

Probe structure, spin i.d., ...

With single-hadron ops, generally don't see multi-hadron energies clearly (more later)

Quarkonia and heavy-light mesons

Dowdall et al (HPQCD) [PR D86, 094510 (2012)]

5

Light isoscalar (I=0) mesons

ETMC preliminary → talks by C. Urbach and K. Ottnad [Thrs, 8G]

Disconnected diagrams

Twisted mass [N_f = 2+1+1], extrapolate in *a* and M_{π} : η : 552(10) MeV, η ': 1005(54) MeV

+ Had Spec Collab prelim (Aniso. Clover, N_f = 2+1) – larger vol ($M_{\pi}L \sim 6$) and more M_{π} c.f. [PR D83, 111502 (2011)] ($M_{\pi}L \sim 4$) (many other isoscalar states in addition to η , η')

Light isoscalar (I=0) mesons

ETMC preliminary → talks by C. Urbach and K. Ottnad [Thrs, 8G]

Disconnected diagrams

Twisted mass [N_f = 2+1+1], extrapolate in *a* and M_{π} : η : 552(10) MeV, η ': 1005(54) MeV

+ Had Spec Collab prelim (Aniso. Clover, $N_f = 2+1$) – larger vol ($M_{\pi}L \sim 6$) and more M_{π} c.f. [PR D83, 111502 (2011)] ($M_{\pi}L \sim 4$) (many other isoscalar states in addition to η , η')

Excited spectroscopy

Had Spec Collab single-hadron 'subduced ops'

$$O(t) = \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \ \bar{\psi}(x) \left[\Gamma \times \overleftrightarrow{D} \times \overleftrightarrow{D} \dots \right] \psi(x)$$

Definite $J^{P(C)}$ in infinite vol. continuum ($\mathbf{p} = \mathbf{0}$) 'Subduce' ops \rightarrow irreps. of reduced sym group [similarly for baryons and 'subduced helicity ops' for **p** ≠ **0**]

Spin identification using Z's

[PR D80 054506, PRL 103 262001, PR D82 034508, D84 074508, D85 014507]

Excited spectroscopy

'Distillati

Had Spec Collab single-hadron 'subduced ops'

$$O(t) = \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \ \bar{\psi}(x) \left[\Gamma \times \overleftrightarrow{D} \times \overleftrightarrow{D} \dots \right] \psi(x)$$

Definite $J^{P(C)}$ in infinite vol. continuum ($\mathbf{p} = \mathbf{0}$) 'Subduce' ops \rightarrow irreps. of reduced sym group [similarly for baryons and 'subduced helicity ops' for **p** ≠ **0**]

Spin identification using Z's

ion'

$$\Box_{xy}(t) = \sum_{k=1}^{N} v_x^{(k)}(t) v_y^{(k)\dagger}(t) \quad \text{e.g.} \quad -\nabla^2 v^{(k)} = \lambda^k v^{(k)}$$

$$\psi(x) \to \tilde{\psi}(x) = \Box\psi(x) \quad \text{factorisation, smearing, ...}$$

$$\langle 0|\bar{\psi}'\Box(t')\Gamma_t^A\Box(t')\psi'(t') + \bar{\psi}\Box(t)\Gamma_t^B\Box(t)\psi(t)|0\rangle$$

[PR D80 054506, PRL 103 262001, PR D82 034508, D84 074508, D85 014507]

Excited spectroscopy

Had Spec Collab single-hadron 'subduced ops'

$$O(t) = \sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \ \bar{\psi}(x) \left[\Gamma \times \overleftrightarrow{D} \times \overleftrightarrow{D} \dots \right] \psi(x)$$

Definite $J^{P(C)}$ in infinite vol. continuum ($\mathbf{p} = \mathbf{0}$) 'Subduce' ops \rightarrow irreps. of reduced sym group [similarly for baryons and 'subduced helicity ops' for **p** ≠ **0**]

Spin identification using Z's

include ~ $[D_i, D_i]$

stillation'

$$\Box_{xy}(t) = \sum_{k=1}^{N} v_x^{(k)}(t) v_y^{(k)\dagger}(t) \quad \text{e.g.} \quad -\nabla^2 v^{(k)} = \lambda^k v^{(k)}$$

$$\psi(x) \to \tilde{\psi}(x) = \Box \psi(x) \quad \text{factorisation, smearing, ...}$$

$$\langle 0 | \bar{\psi}' \Box(t') \Gamma_{t'}^A \Box(t') \psi'(t') + \bar{\psi} \Box(t) \Gamma_t^B \Box(t) \psi(t) | 0 \rangle$$

Up to 3 derivs: many ops in each channel, different spin and angular structures

[PR D80 054506, PRL 103 262001, PR D82 034508, D84 074508, D85 014507]

Charmed (D/D_s) mesons

Graham Moir et al [JHEP 05 (2013) 021] \rightarrow talk by G. Moir [Weds, 5G]

Clover [N_f = 2+1], anisotropic ($a_s/a_t \approx 3.5$), $a_s \approx 0.12$ fm, 24³ x 128 (L ≈ 2.9 fm, $M_{\pi}L \sim 6$) (also 16³), $M_{\pi} \approx 400$ MeV, relativistic charm quark

Charmed (D/D_s) mesons

Graham Moir et al [JHEP 05 (2013) 021] \rightarrow talk by G. Moir [Weds, 5G]

Clover $[N_f = 2+1]$, anisotropic $(a_s/a_t \approx 3.5)$, $a_s \approx 0.12$ fm, $24^3 \times 128$ (L ≈ 2.9 fm, $M_{\pi}L \sim 6$) (also 16³), $M_{\pi} \approx 400$ MeV, relativistic charm quark

Elastic scattering – generalisation and many more details in Michael Döring's talk

Lüscher (elastic): energy levels in **finite vol.** \rightarrow **infinite vol.** scattering phase shift at E_{cm}

Finite box \rightarrow discrete spectrum

Elastic scattering – generalisation and many more details in Michael Döring's talk

Lüscher (elastic): energy levels in **finite vol.** \rightarrow **infinite vol.** scattering phase shift at E_{cm}

Finite box \rightarrow discrete spectrum

Map out phase shift \rightarrow resonance parameters etc

$$\sigma_l(E) \propto \sin^2 \delta_l(E) = \frac{(\Gamma/2)^2}{(E - E_R)^2 + (\Gamma/2)^2}$$

Elastic scattering – generalisation and many more details in Michael Döring's talk

Lüscher (elastic): energy levels in **finite vol.** \rightarrow **infinite vol.** scattering phase shift at E_{cm}

Finite box \rightarrow discrete spectrum

Map out phase shift \rightarrow resonance parameters etc

$$\sigma_l(E) \propto \sin^2 \delta_l(E) = \frac{(\Gamma/2)^2}{(E - E_R)^2 + (\Gamma/2)^2}$$

Need many (multi-hadron) energy levels

Single and multi-hadron ops

Non-zero **P**_{cm}, different box sizes and shapes, twisted b.c.s, ...

Note: reduced symmetry \rightarrow mixing between partial waves

P-wave $\pi\pi$ scattering (J^{PC} = 1⁻⁻, I = 1)

P-wave $\pi\pi$ scattering (J^{PC} = 1⁻⁻, I = 1)

The ρ resonance

P-wave $\pi\pi$ scattering (J^{PC} = 1⁻⁻, I = 1)

Pelissier, Alexandru, [PR D87 014503 (2013)] $N_f = 2, M_{\pi} \approx 300$

Use many single and multi-hadron ops

'Distillation'

$$\mathcal{O}(\vec{P}) = \sum_{\vec{p}_1, \vec{p}_2} \mathcal{C}_{\Lambda}(\vec{P}, \vec{p}_1, \vec{p}_2) \mathcal{O}_{\pi}(\vec{p}_1) \mathcal{O}_{\pi}(\vec{p}_2)$$
 Variationally optimised π ops

$$\vec{P} = \vec{p_1} + \vec{p_2}$$
 $\vec{P} = [0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]$

Aniso. Clover [N_f = 2+1], $M_{\pi} \approx 400$ MeV Three volumes 16³, 20³, 24³ ($M_{\pi}L \sim 4 - 6$)

The ρ resonance

Use many single and multi-hadron ops

\vec{P}	Irrep	Single-meson	$\pi\pi \ 20^3, 24^3 \ (16^3)$
[0, 0, 0]	T_1^-	26	2(3)
	A_1	18	4(4)
[0, 0, 1]	E_2	29	2(2)
[0, 0, 1]	B_1	9	1 (0)
	B_2	9	1 (0)
	A_1	27	3(3)
[0, 1, 1]	B_1	29	3(3)
	B_2	29	2(2)
[1 1 1]	A_1	21	3(3)
[1, 1, 1]	E_2	35	2(2)
[0, 0, 2]	A_1	18	1(1)

'Distillation'

[0, 1], [0, 1, 1], [1, 1, 1]

Consider various irreps – constrain higher partial waves

Operators and energy levels

24³, P = [0,0,1] A₁

Operators and energy levels

24³, P = [0,0,1] A₁

$$|E_1\rangle = +\cos\theta |\rho\rangle + \sin\theta |\pi\pi\rangle |E_2\rangle = -\sin\theta |\rho\rangle + \cos\theta |\pi\pi\rangle$$

$$\left\langle \rho \left| e^{-Ht} \right| \rho \right\rangle = \cos^2 \theta \ e^{-E_1 t} + \sin^2 \theta \ e^{-E_2 t}$$
$$a_t E_1 = 0.1654, a_t E_2 = 0.1779$$

Operators and energy levels

$$\begin{aligned} |E_1\rangle &= +\cos\theta |\rho\rangle + \sin\theta |\pi\pi\rangle \\ |E_2\rangle &= -\sin\theta |\rho\rangle + \cos\theta |\pi\pi\rangle \end{aligned}$$

$$\left\langle \rho \left| e^{-Ht} \right| \rho \right\rangle = \cos^2 \theta \ e^{-E_1 t} + \sin^2 \theta \ e^{-E_2 t}$$
$$a_t E_1 = 0.1654, a_t E_2 = 0.1779$$

24³, P = [0,0,1] A₁

The ρ resonance

Mapped out in detail

The ρ resonance

Mapped out in detail

The ρ resonance

Mapped out in detail

The ρ resonance

Morningstar et al preliminary \rightarrow talk [Mon, 2G] Different op constructions, stochastic distillation 56 ops $q\bar{q}$, $\pi\pi$, $\eta\pi$, $\phi\pi$, $K\bar{K}$ Had Spec Collab lattice (24³ x 128, M_{π} \approx 400 MeV) (also K* channel)

Time-like π form factor X. Feng [poster] \rightarrow Hadron Structure Review

Some other light and strange channels \rightarrow Michael Döring's talk

Charmed mesons

Liu et al [PR D87, 014508] \rightarrow talk by L. Liu [Weds, 5G] Mohler, Prelovsek, Woloshyn [PR D87, 034501] and preliminary results \rightarrow talk by D. Mohler [Weds, 5G] Had Spec Collab preliminary \rightarrow talk by G. Moir [Weds, 5G]

Charmonium

Ozaki, Sasaki [PR D87, 014506] Prelovsek and Leskovec [arXiv:1307.5172] → talk by S. Prelovsek [Thrs, 8G]

Mohler et al (preliminary) \rightarrow talk by D. Mohler [Weds, 5G]

ID	$N_L^3 imes N_T$	N _f	<i>a</i> [fm]	<i>L</i> [fm]	#configs	m_{π} [MeV]	<i>т</i> _К [MeV]
(1)	$16^{3} \times 32$	2	0.1239(13)	1.98	280/279	266(3)(3)	552(2)(6)
(2)	$32^3 imes 64$	2+1	0.0907(13)	2.90	196	156(7)(2)	504(1)(7)

(1) nHYP from Hasenfratz et al [$M_{\pi}L \approx 2.7$], (2) Clover from PACS-CS [$M_{\pi}L \approx 2.3$] Use distillation; for (2) use stoch. distillation [PRD 83, 114505]. Fermilab approach for c

(1) nHYP from Hasenfratz et al [$M_{\pi}L \approx 2.7$], (2) Clover from PACS-CS [$M_{\pi}L \approx 2.3$] Use distillation; for (2) use stoch. distillation [PRD 83, 114505]. Fermilab approach for c

(1) nHYP from Hasenfratz et al [$M_{\pi}L \approx 2.7$], (2) Clover from PACS-CS [$M_{\pi}L \approx 2.3$] Use distillation; for (2) use stoch. distillation [PRD 83, 114505]. Fermilab approach for c

D and D_s mesons

Hadron Spectrum Collaboration preliminary

Preliminary D K (I=0) with $J^P = 0^+$ c.f. $D_s(2317)$

 $M_{\pi} \approx 400$ MeV, two vols, P = [0,0,0]

4 *D K* + 8 *D_s* ops

D and D_s mesons

Hadron Spectrum Collaboration preliminary

Preliminary D π scattering (I=3/2) \rightarrow talk by G. Moir [Weds, 5G]

Prelovsek and Leskovec [arXiv:1307.5172 and prelim results] \rightarrow talk by S. Prelovsek [Thrs, 8G]

$X(3872) [J^{PC} = 1^{++}]$ near/below D D* threshold

Look in I=0 (one vol, one **P**_{cm})

 $c \overline{c}, D \overline{D}^*, J/\psi \, \omega$ ops

Prelovsek and Leskovec [arXiv:1307.5172 and prelim results] \rightarrow talk by S. Prelovsek [Thrs, 8G]

X(3872) $[J^{PC} = 1^{++}]$ near/below D D* threshold

Look in I=0 (one vol, one **P**_{cm})

$$c\overline{c}, D\overline{D}^*, J/\psi\,\omega$$
 ops

Charmonium

Prelovsek and Leskovec [arXiv:1307.5172 and prelim results] \rightarrow talk by S. Prelovsek [Thrs, 8G]

Charmonium

Prelovsek and Leskovec [arXiv:1307.5172 and prelim results] \rightarrow talk by S. Prelovsek [Thrs, 8G]

Look in I=0

X(3872) $[J^{PC} = 1^{++}]$ near/below D D* threshold

Charmonium

Prelovsek and Leskovec [arXiv:1307.5172 and prelim results] \rightarrow talk by S. Prelovsek [Thrs, 8G]

 \boldsymbol{Q}

Hadron Spectroscopy – Baryons

- Missing states?
- 'Freezing' of degrees of freedom?
- Gluonic excitations?

 \boldsymbol{q}

Hadron Spectroscopy – Baryons

- Missing states? 0
- 'Freezing' of degrees of freedom? 0
- **Gluonic excitations?** C

Edwards et al (Hadron Spectrum Collaboration) [PR D87, 054506]

Light and strange baryons (all flavour combinations)

Lots of ops with different structures (same idea as mesons)

Aniso. Clover ($a_s/a_t \approx 3.5$), $a_s \approx 0.12$ fm, $16^3 \times 128$ (L ≈ 1.9 fm, $M_{\pi} L \ge 4$)

Aniso. Clover $(a_s/a_t \approx 3.5)$, $a_s \approx 0.12$ fm, $16^3 \times 128$ (L ≈ 1.9 fm, $M_{\pi} L \ge 4$)

N and Δ baryons

[PR D84 074508; D85 054016]

Counting expected in non. rel. quark model, SU(6) x O(3)

 N_f = 2+1, $M_{\pi} \approx 400 \text{ MeV}$

N and Δ baryons

[PR D84 074508; D85 054016]

Counting expected in non. rel. quark model, SU(6) x O(3)

 N_f = 2+1, $M_{\pi} \approx 400 \text{ MeV}$

[PR D87, 054506]

 $N_f = 3$, $M_\pi \approx 700$ MeV

SU(3) flavour symmetry $ightarrow 1_F \oplus 8_F \oplus 10_F$

Multiplicities as expected in non. rel. quark model SU(6) x O(3) (flavour x spin x space)

No 'freezing' of d.o.f.

[PR D87, 054506]

 $N_f = 3$, $M_\pi \approx 700$ MeV

SU(3) flavour symmetry $ightarrow 1_F \oplus 8_F \oplus 10_F$

[PR D87, 054506]

 $N_f = 3$, $M_\pi \approx 700$ MeV

SU(3) flavour symmetry $ightarrow 1_F \oplus 8_F \oplus 10_F$

[PR D87, 054506]

 $N_f = 2+1,$ $M_{\pi} \approx 400 \text{ MeV}$

Broken SU(3) flav. sym.

Excited nucleons: positive parity

Excited nucleons: negative parity

Charm baryons

Padmanath et al (Had Spec Collab) [arXiv:1307.7022] Excited ccc baryons → talk by Padmanath [Thrs, 7G] (also cc baryons)

Recent lower-lying charm baryons work:

- Briceño, Lin, Bolton [PR D86, 094504], N_f = 2+1+1
- Namekawa et al (PACS-CS) [PR D87, 094512], $N_f = 2+1$ (physical m_{π})
- Talk by Z. Brown [Thrs, 7G]
- Talk by R. Horsley [Thrs, 7G]

See next talk...

Summary

- Significant process in studying excited spectra

 gluonic excitations, degrees of freedom, flavour structure
- Lots of experimental interest
- Also beating down systematics → accurate low-lying masses
- Resonances etc (need appropriate multi-hadron ops)

 Mesons: ρ studied in detail, still a lot of work to do for others
 Baryons: a bit further behind
- Can understand puzzles in near future? (unusual charmonia, light scalars, Roper, ...)
- Challenges in scattering/resonances → next talk