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neutral pseudoscalar meson vanish at k ≠ kc, as dis-
cussed below. The results for the neutral pseudoscalars
are shown in Fig. 1. For the physical values of the quark
charges, we expect that an expansion of the coefficients A
and B in (1) to first order in e2 should be quite accurate.
For the larger values of QED coupling that we use in our
numerical investigation, the accuracy of first order pertur-
bation theory is less clear: in fact, a good fit to all our data
requires small but nonzero terms of order e4, correspond-
ing to two-photon diagrams. Comparison of the order e4

terms with those of order e2 provides a quantitative check
on the accuracy of QED perturbation theory. We have
tried including all possible e4 terms in the fit, but retained
only those which significantly reduce the x2 per degree of
freedom.
According to a theorem of Dashen [7], in the limit of

vanishing quark mass, the value of m2
P is proportional

to the square of the total charge. Thus, we have also
allowed the values of the critical hopping parameters for
each of the quark charges to be fit parameters, requiring
that the mass of the neutral mesons vanish in the chiral
limit. Thus A takes the form As1dseq 1 eq̄d2 to order
e2. (Order e4 terms were not found necessary to fit the
data.) The coefficient B in (1) which parametrizes the
slope of m2

P may also be expanded in perturbation theory.
Of the five possible e4 terms in Bs2dseq, eq̄d, only the e4

q,
e3

qeq̄, and e2
qe2

q̄ terms were found to improve the x2. The
coefficients in A and B, along with the four values of kc
for the four quark charges, constitute a 12-parameter fit to
the meson mass values.
Before discussing the numerical results, we briefly

describe the formulation of lattice QED which we have
employed in these calculations. The gauge group in this
case is Abelian, and one has the choice of either a compact
or noncompact formulation for the Abelian gauge action.
Lattice gauge invariance still requires a compact gauge-
fermion coupling, but we are at liberty to employ a
noncompact form of the pure photon action Sem. Then
the theory is free in the absence of fermions, and is always

FIG. 1. The mass squared M2
P (in GeV2) for neutral pseu-

doscalar meson vs lattice bare quark masses mq 1 mq̄ (in GeV)
is shown for various quark charges eq ≠ 0.0, 20.4, 0.8, and
21.2.

in the nonconfining, massless phase. An important aspect
of a noncompact formalism is the necessity for a gauge
choice. We use QCD lattice configurations which have
all been converted to Coulomb gauge for previous studies
of heavy-light mesons. Coulomb gauge turns out to be
both practically and conceptually convenient in the QED
sector as well.
For the electromagnetic action, we take

Sem ≠
1

4e2

X

nmn

s=mAnn 2 =nAnmd2, (2)

with e the bare electric coupling, n specifies a lattice
site, =m the discrete lattice right gradient in the m
direction, and Anm takes on values between 2` and 1`.
Electromagnetic configurations were generated using (2)
as a Boltzmann weight, subject to the linear Coulomb
constraint

=̄iAni ≠ 0 , (3)
with =̄ a lattice left-gradient operator. The action is
Gaussian distributed so it is a trivial matter to generate
a completely independent set in momentum space, recov-
ering the real space Coulomb-gauge configuration by fast
Fourier transform. We fixed the global gauge freedom
remaining after condition (3) is imposed by setting the
p ≠ 0 mode equal to zero for the transverse modes, and
the $p ≠ 0 mode to zero for the Coulomb modes on each
time slice. (This implies a specific treatment of finite vol-
ume effects which will be discussed below.) The resulting
Coulomb gauge field Anm is then promoted to a compact
link variable Uem

nm ≠ e6iqAnm coupled to the quark field in
order to describe a quark of electric charge 6qe. Quark
propagators are then computed for propagation through
the combined SUs3d 3 Us1d gauge field.
Next we discuss the evaluation of critical hopping

parameters for nonzero quark charge. The self-energy
shift induced by electromagnetic tadpole graphs may be
computed perturbatively. The one-loop tadpole graph is
(for Wilson parameter r ≠ 1 and at zero momentum in
Coulomb gauge)

dmEM ≠
e2

L4

X

kfi0

(
1

4
P

m k̂2
m

1
1

8
P

i k̂2
i

)
, (4)

where km are the discrete lattice momentum components
for a L4 lattice and k̂m ≠ sinskmy2d. This is entirely
analogous to the well known QCD term dmQCD [8].
The mass shift is then given by the sum over multiple
insertions at the same point, which exponentiates the
one-loop graph. The usual strong QCD corrections at
b ≠ 5.7 are given in this approximation by an overall
multiplicative factor of 1y8ke≠0

c . Together this produces
a shift of the critical inverse hopping parameter of

Dmc ;

√
1

2kc
2

1
2ke≠0

c

!
≠

1
8ke≠0

c
s1 2 e2dmEM d . (5)

The contribution from the conventional one-loop radiative
correction graph is found to be about one-third the size of
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FIG. 2. An example of effective mass for the π+ meson
in non-QED(black), qQED(red) and fQED(blue) with am1 =
am3 = 0.01. The χ2 fit results of the masses with uncorrelated
fit in t are denoted by the horizontal lines. In fitting the fQED
data, χ2/d.o.f.(uncorr) = 0.11 and χ2/d.o.f.(corr) = 0.67.
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FIG. 3. Jackknife data of fit masses of Fig. 2 (uncorr).

check with the qQED result. In fitting for the LECs, we
anticipated a problematic hierarchy between the e2s and
esev terms, attributable to a double suppression factor in
the latter,

m1 −m3

m1 +m3
tr(Qs(3)Ms(3))

m

ΛQCD
, (10)

leaving the esev terms unresolved, where

Ms(3) =
1

m
diag(m4,m5,m6), m =

m4 +m5 +m6

3
. (11)

Although the difficulty can, in principle, be overcome
with enormous statistics, drastic improvements are pro-
vided by engineering sign flips in the EM charge. Besides
the ±e trick (Eqs. (8) and (9)), consider a basic transfor-
mation

T1 : (m1, q1;m3, q3) −→ (m3, q3;m1, q1), (12)

under which the meson system is invariant (CPT ). In
addition to T1, let us introduce transformations:

T2 : (m1, q1;m3, q3) −→ (m1,−q1;m3,−q3), (13)

T3 : (m1, q1;m3, q3) −→ (m3,−q1;m1,−q3). (14)

Eqs. (12)-(14) form a set of transformations that ex-
change two valence quark masses and EM charges with,
or without, flipping the sign of ev. Note that T2 and
T3 yield only partial invariances of Eqs. (1) and (3), in
the sense that the invariance holds only for specific terms
in each. In Tab. I, the transformation property of each
term in NLO PQChPT is summarized. While the e2s and
esev terms retain their even and oddness under T1 and T2
to all orders in quark mass, the transformation property
under T3 is not preserved at order higher than O(am) in
the quark mass expansion. At NLO in SU(2) PQChPT
in formula (3), the esev term is a mixture of even and

TABLE I. Transformation property under Eqs. (12)-(14) for
individual terms in NLO SU(3) and SU(2) PQChPT.

terms in NLO PQChPT associated with
transformation Y1, Y

′

1 , Y
′′

1 C, J , J ′ K, K′

T1 (Eq. (12)) even even even
T2 (Eq. (13)) even odd odd
T3 (Eq. (14)) even even odd

TABLE II. QED low-energy constants with µ = Λχ = 1 GeV.
Y1 is defined as Y1 = Y1trQ2

s(3) for SU(3) ChPT and Y1 =

Y1trQ2
s(2) + Y ′

1(trQs(2))
2 + Y ′′

1 q6trQs(2) for SU(2) ChPT. J
and K depict J = JtrQs(2) + J ′q6 and K = KtrQs(2) +K′q6,
respectively. The qQED values for C are quoted from Ref. [4],
whose values are obtained from 243×64 lattice and by infinite
volume ChPT formula. The values of B0 and F0 used in the
chiral fit are quoted from Ref. [7].

SU(3) ChPT SU(2) ChPT
uncorr corr uncorr corr

107C (qQED) 2.2(2.0) – 18.3(1.8) –
107C 8.4(4.3) 8.3(4.7) 20(14) 15(21)
102Y1 -5.0(3.6) -0.4(5.6) – –
102Y1 -3.1(2.2) -0.2(3.4) -3.0(2.2) -0.2(3.4)
104J – – -2.6(1.6) -3.3(2.8)
104K – – -3.1(6.9) -3.7(7.8)

odd contributions since the three-flavor feature (2) is ex-
plicitly broken. By adding and subtracting squared me-
son masses related by these transformations, each term
can be separately extracted and individually fit. Note
that we need at least three different sets of sea quark
EM charges to fully determine the fQED LECs using
the SU(2) ChPT; otherwise we only know their linear
combinations (see Tab. II). A useful choice would be:
[trQs(2) = 0, ∀q6], [trQs(2) #= 0, q6 = 0] and [trQs(2) #= 0,
q6 #= 0].
Figs. 4-9 show individual sea-quark charge contribu-

tions to the pion mass-squared, e2s , esev(T3-even) and
esev(T3-odd) parts. The lattice artifact ingredient, which
is caused by the finiteness of Ls, is subtracted from the
e2s term. In the figures, we can clearly see that the hi-
erarchy between the e2s and esev terms is O(102), as ex-
pected by the suppression given by Eq. (10), and the sep-
aration using the transformation T2 successfully works.
The valence EM charge dependence is constant for the
e2s term and linear for the eves terms, as expected from
the smallness of the fine structure constant in QED. We
perform uncorrelated chiral fits for the e2s , esev(T3-even)
and esev(T3-odd) terms separately setting µ to the chiral
scale Λχ = 1 GeV and obtain the LECs in Tab. II. In this
fit, we choose a minimal set of data with smaller valence
quark masses, and ignore q6 dependence in B0 because
of smallness of e2 and Y1. We also neglect finite volume
effects which could give significant shifts in the EM mass
spectrum. However, we remark that our quarks are rel-
atively heavy even though our lattice is small. Although
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FIG. 5: Ratio of K0 to K+ propagators to detect the mass
difference mK0 −mK+ . Our results (black symbol) are con-
sistent with the expected slope from the experimental value
of mK0 −mK+ (red line).
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Figure 2: Typical SχPT fit to the squared-mass EM splitting ΔM2 vs. the sum of the valence-quark masses.
Only a small subset of the charged-meson data is shown. The red, blue and green curves correspond to three
different lattice spacings. The brown and black curves are continuum limits for ΔM2, without or with the
correction from χPT for physical sea-quark charges. The purple curves are the continuum limits for the
K+–K0 splitting (right), and the π+–“π0” splitting (left).

the kaon case, the adjustment is a very small correction. From the black lines for the π+ and
K+, we subtract the corresponding results for the neutral mesons, “π0” and K0, giving the purple
lines. Results for (M2

π+ −M2
“π0”)

γ and (M2
K+ −M2

K0)
γ are then obtained from the intersections of

the purple lines and the vertical dashed-dotted lines that give the location of the physical point for
each meson. The excellent agreement of the result for (M2

π+ −M2
“π0”)

γ and the experimental pion
splitting (horizontal dotted line) is accidental, since our result has roughly 20% total error.

We find the following preliminary results:

(M2
K+ −M2

K0)
γ = 2100(90)(250) MeV2 , (M2

K0)
γ = 901(8)(9)(?) MeV2

(M2
π+ −M2

“π0”)
γ = 1270(90)(230)(80) MeV2 , (M2

“π0”)
γ = 157.8(1.4)(1.7)(?) MeV2

ε = 0.65(7)(14)(10) (4)

The first two errors in each case are statistical and lattice systematic uncertainties. The latter error
comes largely from the effects of changing the assumptions entering into the chiral/continuum fit.
Note, however, that finite-volume errors are not included at present. We expect that ultimately they
will be a significant, but subdominant, source of error. The “?” for (M2

K0)
γ and (M2

“π0”)
γ represent

the effect of EM quenching and, for (M2
“π0”)

γ , the effect of neglected disconnected diagrams. These
errors are likely to be much larger than the small quoted errors. For (M2

π+−M2
“π0”)

γ and ε the third
error is a rough guess of the effect of neglecting disconnected diagrams, which we estimate by 50%
of the result for (M2

“π0”)
γ . If we redefine ε by replacing our computation of the pion EM splitting in

Eq. (1) with the experimental splitting, we get ε = 0.66(7)(20), which has larger chiral/continuum-
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X �MX �QEDMX �QCDMX

N �0.68(39)(36) 1.59(30)(35) �2.28(25)(7)

⌃ �7.84(87)(72) 0.08(12)(34) �7.67(79)(105)

⌅ �7.16(76)(47) �1.29(15)(8) �5.87(76)(43)

TABLE I. Isospin breaking mass di↵erences in MeV for mem-
bers of the baryon octet. The first error is statistical and the
second is systematic. As discussed in the text, we guesstimate
the QED quenching uncertainties on the e.m. contributions to
be O(10%). Propagating the uncertainty in �QEDM2

K yields
an O(4%) error on the �m contributions. The quenching un-
certainties on the total splittings can then be obtained by
adding those of the e.m. and �m contributions in quadrature.
These guesstimates are not included in the results.

of by the p-value.
The �m corrections that we do not include in the sea

are NLO in isospin breaking and can safely be neglected.
The neglected O(↵) sea-quark contributions break fla-
vor SU(3). Moreover, large-Nc counting indicates that
they are O(1/Nc). Combining the two suppression fac-
tors yields an estimate (M⌃ �MN )/(NcMN ) ' 0.09. A
smaller estimate is obtained by supposing that these cor-
rections are typical quenching e↵ects [18] that are SU(3)-
suppressed, or by using [19] the NLO �PT results of [10].
However, in the absence of direct quantitative evidence,
it is safer to assume that the e.m. contributions to the
splittings carry an O(10%) QED quenching uncertainty.

Final results and discussion. Combining the methods
described above, we obtain our final results for the total
octet baryon isospin splittings �MN , �M⌃ and �M⌅ de-
fined above. These results, together with those obtained
for the e.m. and �m contributions, are summarized in
Table I. We also plot them in Fig. 2, together with the
experimental values for the full splittings. Our results
are compatible with experiment.

Concerning the separation into �m and e.m. contribu-
tions, there exist very few determinations of these quan-
tities up to now. In the review [20], hadron e.m. split-
tings were estimated using a variety of models and Cot-
tingham’s formula for the nucleon. These estimates are
compatible with our results within ⇠ 1.5 �. The e.m. nu-
cleon splitting has recently been re-evaluated with Cot-
tingham’s formula in [21], yielding a result which is in
agreement with ours. �MN has also been studied with
sum rules in [22].

Besides the entirely quenched, pioneering work of [23],
ours is the only one in which the baryon octet isosplit-
tings are fully computed. The only other lattice calcula-
tion of the full nucleon splitting is presented in [24][25].
Like ours, it implements QED only for valence quarks.
While their �QCDMN agrees very well with ours, agree-
ment is less good for the e.m. contribution and total split-
ting, which they find to be 0.38(7) MeV and �2.1(7) MeV,
respectively. That study was performed in rather small

�9
�8
�7
�6
�5
�4
�3
�2
�1

0
1
2

�MN �M⌃ �M⌅

(M
eV

)

total
QCD
QED
exp.

FIG. 2. Summary of our results for the isospin mass splittings
of the octet baryons. Also shown are the individual contri-
butions to these splittings from the mass di↵erence mu �md

(QCD) and from e.m. (QED). The bands indicate the size
of the splittings and contributions. On the points, the er-
ror bars are the statistical and total uncertainties (statistical
and systematic combine in quadrature). For comparison, the
experimental values for the total splittings are also displayed.

volumes with a limited set of simulation parameters,
making an estimate of systematic errors di�cult. The
few other lattice calculations consider only the �m con-
tributions to the baryon splittings, in Nf=2 [7, 26] and
Nf=2+1 [27–29] simulations. The results of [26–29] rely
on imprecise phenomenological input to fix mu/md or
(mu �md). They use the estimate for �QEDM2

K of [30],
directly in [26, 28] and indirectly, through MILC’s re-
sults for mu/md [31], in [27]. In [29], the two values of
mu/md from [30, 32] are used as an input. The most
recent calculation [7] actually determines �QEDM2

K in
quenched QED, as we do here for Nf=2+1. �QCDMN

is computed in [7, 26, 27] while all three QCD splittings
are obtained in [28, 29]. Agreement with our results are
typically good. In all of these calculations, the range of
parameters explored is smaller than in ours, making it
more di�cult to control the physical limit.

The computation presented here is an encouraging step
toward a precise determination of octet baryon splittings,
which would constitute an ab initio confirmation that the
proton cannot decay weakly.
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Research Infrastructure resource JUGEEN based in Ger-
many at FZ Jülich, with further HPC resources pro-
vided by GENCI-[IDRIS/CCRT] (grant 52275) and FZ
Jülich, as well as using clusters at Wuppertal and
CPT. This work was supported in part by the OCEVU
Excellence Laboratory, by CNRS grants GDR n02921
and PICS n04707, by EU grants FP7/2007-2013/ERC
n0208740, MRTN-CT-2006-035482 (FLAVIAnet) and by
DFG grants FO 502/2, SFB-TR 55.



isospin symmetry

the two lightest quarks, the up and the down, have different masses and different
electric charges, nevertheless

m̂d − m̂u
ΛQCD

� 1 , (eu − ed)ef α̂em � 1

thanks to isospin symmetry:

• hadrons can be classified according to the representations of “angular momentum” algebra

• hadronic processes can be studied, separately, in the different isospin “channels”, for example

ππ −→ πππ| {z }
forbidden

, [ ππ −→ ππ ]
I=0,1,2

• the neutral pion two-point function has no quark disconnected diagrams

• unquenched simulations with light Wilson fermions are possible (without reweighting)

det (D[U ] +mud) det
“
D[U ]

†
+mud

”
> 0

• etc. etc.



why isospin breaking?

isospin breaking is a small effect but generates a rich phenomenology:

• chemistry: hydrogen is stable because the electron capture reaction
p + e→ n + ν is forbidden

Mn −Mp = [Mn −Mp]
QCD

+ [Mn −Mp]
QED| {z }

<0

> Me

• flavour content of the hadrons: the mixing angles between {π0, η, η′}
and {ρ, ω, φ} are very different, why?

• flavour content of the “new” X, Y , Z hadrons: [c̄c̄][uu] would be a
neutral state with definite flavour and isospin quantum numbers: a “pure”
tetraquark!

A.Esposito, M.Papinutto, A.Pilloni, A.Polosa, N.T., arXiv:1307.2873

Y.Ikeda talk

concerning matrix elements relevant in flavour physics
FALG Eur.Phys.J.C71 (2011)

FALG2 http://itpwiki.unibe.ch/flag
A.Kastner,H.Neufeld Eur.Phys.J.C57 (2008)

V.Cirigliano,H.Neufeld Phys.Lett.B700 (2011)

F
Kπ
+ (0) = 0.967(4) ∼ 0.4%24FK+π0

+ (q2)

FK
0π−

+ (q2)
− 1

35χpt
QCD

= 0.029(4)

FK/Fπ = 1.194(5) ∼ 0.4%"
F
K+/Fπ+

FK/Fπ
− 1

#χpt
QCD

= −0.0022(6)



isospin breaking on the lattice

• QCD+QED is a renormalizable theory
that can be put on the lattice

• the direct simulation is possible if
each single determinant is positive

G.Schierholz poster mu,d ∼ ms

• but very expensive . . .

~g =
“
e
2
, g

2
s,mu,md,ms

”

〈O〉~g =

R
dAe−S[A] dU e−βS[U] det (D[U,A;~g]) O[U,A;~g]R

dAe−S[A] dU e−βS[U] det ([U,A;~g])

~g
0 =

“
0, (g0

s)2,m0
ud,m

0
ud,m

0
s

”

〈O〉~g
0

=

R
dU e−β0S[U] det

“
D[U;~g0]

”
O[U;~g0]R

dU e−β0S[U] det
“
D[U;~g0]

”

R[U,A;~g] = e
−(β−β0)S[U] det (D[U,A;~g])

det
“
D[U;~g0]

”

〈O〉~g =

˙
R O

¸A,~g0

˙
R
¸A,~g0

• much more practical to (re)use the gauge configurations
generated in isosymmetric QCD

• this can be done by reweighting pure QCD ensembles

• the values of the bare parameters in the two theories
depend upon the renormalization prescriptions, more to
say later on this point. . .

• in the electroquenched approximation sea quarks are
neutral w.r.t. QED:

R[U,A;~g] −→ 1



the first pioneering calculation: non-compact QED

• QED is treated in the non–compact formulation: the gauge potential
Aµ is the dynamical variable

S[A] =
1

4

X
x;µ,ν

h
∇+
µAν(x)−∇+

ν Aµ(x)
i2

• the QED+QCD links are obtained by exponentiation

Uµ(x) −→ e
ief eAµ(x)

Uµ(x)

Duncan,Eichten,Thacker, Phys.Rev.Lett. 76(1996)
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neutral pseudoscalar meson vanish at k ≠ kc, as dis-
cussed below. The results for the neutral pseudoscalars
are shown in Fig. 1. For the physical values of the quark
charges, we expect that an expansion of the coefficients A
and B in (1) to first order in e2 should be quite accurate.
For the larger values of QED coupling that we use in our
numerical investigation, the accuracy of first order pertur-
bation theory is less clear: in fact, a good fit to all our data
requires small but nonzero terms of order e4, correspond-
ing to two-photon diagrams. Comparison of the order e4

terms with those of order e2 provides a quantitative check
on the accuracy of QED perturbation theory. We have
tried including all possible e4 terms in the fit, but retained
only those which significantly reduce the x2 per degree of
freedom.
According to a theorem of Dashen [7], in the limit of

vanishing quark mass, the value of m2
P is proportional

to the square of the total charge. Thus, we have also
allowed the values of the critical hopping parameters for
each of the quark charges to be fit parameters, requiring
that the mass of the neutral mesons vanish in the chiral
limit. Thus A takes the form As1dseq 1 eq̄d2 to order
e2. (Order e4 terms were not found necessary to fit the
data.) The coefficient B in (1) which parametrizes the
slope of m2

P may also be expanded in perturbation theory.
Of the five possible e4 terms in Bs2dseq, eq̄d, only the e4

q,
e3

qeq̄, and e2
qe2

q̄ terms were found to improve the x2. The
coefficients in A and B, along with the four values of kc
for the four quark charges, constitute a 12-parameter fit to
the meson mass values.
Before discussing the numerical results, we briefly

describe the formulation of lattice QED which we have
employed in these calculations. The gauge group in this
case is Abelian, and one has the choice of either a compact
or noncompact formulation for the Abelian gauge action.
Lattice gauge invariance still requires a compact gauge-
fermion coupling, but we are at liberty to employ a
noncompact form of the pure photon action Sem. Then
the theory is free in the absence of fermions, and is always

FIG. 1. The mass squared M2
P (in GeV2) for neutral pseu-

doscalar meson vs lattice bare quark masses mq 1 mq̄ (in GeV)
is shown for various quark charges eq ≠ 0.0, 20.4, 0.8, and
21.2.

in the nonconfining, massless phase. An important aspect
of a noncompact formalism is the necessity for a gauge
choice. We use QCD lattice configurations which have
all been converted to Coulomb gauge for previous studies
of heavy-light mesons. Coulomb gauge turns out to be
both practically and conceptually convenient in the QED
sector as well.
For the electromagnetic action, we take

Sem ≠
1

4e2

X

nmn

s=mAnn 2 =nAnmd2, (2)

with e the bare electric coupling, n specifies a lattice
site, =m the discrete lattice right gradient in the m
direction, and Anm takes on values between 2` and 1`.
Electromagnetic configurations were generated using (2)
as a Boltzmann weight, subject to the linear Coulomb
constraint

=̄iAni ≠ 0 , (3)
with =̄ a lattice left-gradient operator. The action is
Gaussian distributed so it is a trivial matter to generate
a completely independent set in momentum space, recov-
ering the real space Coulomb-gauge configuration by fast
Fourier transform. We fixed the global gauge freedom
remaining after condition (3) is imposed by setting the
p ≠ 0 mode equal to zero for the transverse modes, and
the $p ≠ 0 mode to zero for the Coulomb modes on each
time slice. (This implies a specific treatment of finite vol-
ume effects which will be discussed below.) The resulting
Coulomb gauge field Anm is then promoted to a compact
link variable Uem

nm ≠ e6iqAnm coupled to the quark field in
order to describe a quark of electric charge 6qe. Quark
propagators are then computed for propagation through
the combined SUs3d 3 Us1d gauge field.
Next we discuss the evaluation of critical hopping

parameters for nonzero quark charge. The self-energy
shift induced by electromagnetic tadpole graphs may be
computed perturbatively. The one-loop tadpole graph is
(for Wilson parameter r ≠ 1 and at zero momentum in
Coulomb gauge)

dmEM ≠
e2

L4

X

kfi0

(
1

4
P

m k̂2
m

1
1

8
P

i k̂2
i

)
, (4)

where km are the discrete lattice momentum components
for a L4 lattice and k̂m ≠ sinskmy2d. This is entirely
analogous to the well known QCD term dmQCD [8].
The mass shift is then given by the sum over multiple
insertions at the same point, which exponentiates the
one-loop graph. The usual strong QCD corrections at
b ≠ 5.7 are given in this approximation by an overall
multiplicative factor of 1y8ke≠0

c . Together this produces
a shift of the critical inverse hopping parameter of

Dmc ;

√
1

2kc
2

1
2ke≠0

c

!
≠

1
8ke≠0

c
s1 2 e2dmEM d . (5)

The contribution from the conventional one-loop radiative
correction graph is found to be about one-third the size of
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• by imposing periodic boundary conditions on the gauge field and a gauge fixing (here Feynman), one gets

∇−µ Aµ(x) = 0

SQED = 1
2
P
x Aµ(x)

h
−∇−ν ∇

+
ν

i
Aµ(x)

= 1
2
P
k Ã

?
µ(k) [2 sin(kν/2)]2 Ãµ(k)

• without additional prescriptions, the photon propagator is infrared divergent and the Gauss’s law is inconsistent

∇−µ Fµν(x) = Jν(x) 0 =
X
~x

∇−i Ei(t, ~x) = e
X
~x

δ
3
(t, ~x)= e
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• QED is treated in the non–compact formulation: the gauge potential
Aµ is the dynamical variable

S[A] =
1

4

X
x;µ,ν

h
∇+
µAν(x)−∇+

ν Aµ(x)
i2

• the QED+QCD links are obtained by exponentiation

Uµ(x) −→ e
ief eAµ(x)

Uµ(x)
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neutral pseudoscalar meson vanish at k ≠ kc, as dis-
cussed below. The results for the neutral pseudoscalars
are shown in Fig. 1. For the physical values of the quark
charges, we expect that an expansion of the coefficients A
and B in (1) to first order in e2 should be quite accurate.
For the larger values of QED coupling that we use in our
numerical investigation, the accuracy of first order pertur-
bation theory is less clear: in fact, a good fit to all our data
requires small but nonzero terms of order e4, correspond-
ing to two-photon diagrams. Comparison of the order e4

terms with those of order e2 provides a quantitative check
on the accuracy of QED perturbation theory. We have
tried including all possible e4 terms in the fit, but retained
only those which significantly reduce the x2 per degree of
freedom.
According to a theorem of Dashen [7], in the limit of

vanishing quark mass, the value of m2
P is proportional

to the square of the total charge. Thus, we have also
allowed the values of the critical hopping parameters for
each of the quark charges to be fit parameters, requiring
that the mass of the neutral mesons vanish in the chiral
limit. Thus A takes the form As1dseq 1 eq̄d2 to order
e2. (Order e4 terms were not found necessary to fit the
data.) The coefficient B in (1) which parametrizes the
slope of m2

P may also be expanded in perturbation theory.
Of the five possible e4 terms in Bs2dseq, eq̄d, only the e4

q,
e3

qeq̄, and e2
qe2

q̄ terms were found to improve the x2. The
coefficients in A and B, along with the four values of kc
for the four quark charges, constitute a 12-parameter fit to
the meson mass values.
Before discussing the numerical results, we briefly

describe the formulation of lattice QED which we have
employed in these calculations. The gauge group in this
case is Abelian, and one has the choice of either a compact
or noncompact formulation for the Abelian gauge action.
Lattice gauge invariance still requires a compact gauge-
fermion coupling, but we are at liberty to employ a
noncompact form of the pure photon action Sem. Then
the theory is free in the absence of fermions, and is always

FIG. 1. The mass squared M2
P (in GeV2) for neutral pseu-

doscalar meson vs lattice bare quark masses mq 1 mq̄ (in GeV)
is shown for various quark charges eq ≠ 0.0, 20.4, 0.8, and
21.2.

in the nonconfining, massless phase. An important aspect
of a noncompact formalism is the necessity for a gauge
choice. We use QCD lattice configurations which have
all been converted to Coulomb gauge for previous studies
of heavy-light mesons. Coulomb gauge turns out to be
both practically and conceptually convenient in the QED
sector as well.
For the electromagnetic action, we take

Sem ≠
1

4e2

X

nmn

s=mAnn 2 =nAnmd2, (2)

with e the bare electric coupling, n specifies a lattice
site, =m the discrete lattice right gradient in the m
direction, and Anm takes on values between 2` and 1`.
Electromagnetic configurations were generated using (2)
as a Boltzmann weight, subject to the linear Coulomb
constraint

=̄iAni ≠ 0 , (3)
with =̄ a lattice left-gradient operator. The action is
Gaussian distributed so it is a trivial matter to generate
a completely independent set in momentum space, recov-
ering the real space Coulomb-gauge configuration by fast
Fourier transform. We fixed the global gauge freedom
remaining after condition (3) is imposed by setting the
p ≠ 0 mode equal to zero for the transverse modes, and
the $p ≠ 0 mode to zero for the Coulomb modes on each
time slice. (This implies a specific treatment of finite vol-
ume effects which will be discussed below.) The resulting
Coulomb gauge field Anm is then promoted to a compact
link variable Uem

nm ≠ e6iqAnm coupled to the quark field in
order to describe a quark of electric charge 6qe. Quark
propagators are then computed for propagation through
the combined SUs3d 3 Us1d gauge field.
Next we discuss the evaluation of critical hopping

parameters for nonzero quark charge. The self-energy
shift induced by electromagnetic tadpole graphs may be
computed perturbatively. The one-loop tadpole graph is
(for Wilson parameter r ≠ 1 and at zero momentum in
Coulomb gauge)

dmEM ≠
e2

L4

X

kfi0

(
1

4
P

m k̂2
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1
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i k̂2
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, (4)

where km are the discrete lattice momentum components
for a L4 lattice and k̂m ≠ sinskmy2d. This is entirely
analogous to the well known QCD term dmQCD [8].
The mass shift is then given by the sum over multiple
insertions at the same point, which exponentiates the
one-loop graph. The usual strong QCD corrections at
b ≠ 5.7 are given in this approximation by an overall
multiplicative factor of 1y8ke≠0

c . Together this produces
a shift of the critical inverse hopping parameter of

Dmc ;

√
1

2kc
2

1
2ke≠0

c

!
≠

1
8ke≠0

c
s1 2 e2dmEM d . (5)

The contribution from the conventional one-loop radiative
correction graph is found to be about one-third the size of
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• by subtracting the zero momentum mode, a residual gauge ambiguity, both problems are solved

∇−µ
ˆ
Aµ(x)+c

˜
= 0

P⊥φ(x) = φ(x)− 1
V

P
y φ(y)

SQED = 1
2
P
k 6=0 Ã

?
µ(k) [2 sin(kν/2)]2 Ãµ(k)

= 1
2
P
x Aµ(x)

h
−∇−ν ∇

+
ν

i
P⊥Aµ(x)

−→ P⊥
h
∇−µ Fµν(x)− Jν(x)

i
= 0

• it can be shown that this infrared regularization changes physical quantities by finite volume effects, no new ultraviolet
divergences: (large) FVE are unavoidable, QED is a long range interaction!
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variable U for the gluon field and fermion field ψ. In or-
der to illustrate the reweighting method, we consider the
system with a fermion action Sf [ψ̄,ψ, Ũ ] = −ψ̄D[Ũ ]ψ,

where Ũ is the combined SU(3)× U(1) gauge link vari-
able associated with a quark with EM charge qe;

Ũ = UeiqeA. (4)

Here, we assume the photon fields are generated by a
non-compact U(1) photon action;

SU(1)[A] =
1

4

∑

x

∑

µ,ν

(∂µAν(x)− ∂νAµ(x))
2 . (5)

In this study the fine structure constant of QED is set
to be αEM = e2/(4π) = 1/137. An expectation value for
some observable O in fQED+fQCD is formally related to
the one in qQED+fQCD, in which the photon fields in
the quark determinants are neglected, via

〈O〉fQED+fQCD =
〈wO〉qQED+fQCD

〈w〉qQED+fQCD
, (6)

introducing a reweighting factor [8],

w[Ũ , U ] =
det(D[Ũ ])

det(D[U ])
. (7)

The determinants in Eq. (7) are calculated by a stochas-
tic estimate with random Gaussian noise vectors. Since
the distribution of w has a long tail, a naive application
of the stochastic estimator for w could fail [11]. To eval-
uate w safely, breaking up the determinant into many
small pieces is efficient, because the effects of the outliers
are largely suppressed [11, 12]. For the splitting, we use
a mathematical identity for the determinant, so called
the nth-root trick: w = detΩ =

(
detΩ1/n

)n
, which is

easily implemented by the rational approximation [13].
We apply reweighting to 2 + 1 flavor dynamical DWF
and Iwasaki gluon configurations generated by the RBC-
UKQCD collaborations [14]. The configuration set is one
of the ensembles used in the qQED study [4], whose sim-
ulation parameters are βQCD = 2.13, L3 × T × Ls =
163×32×16, inverse lattice spacing a−1 = 1.784(44) GeV,
(amu, amd, ams) = (0.01, 0.01, 0.04). The U(1) photon
fields, which have been already generated in the qQED
study, are combined with the gluon configurations ac-
cording to Eq. (4). We also employ n = 24 roots and use
4 complex random Gaussian noise vectors per root on
each configuration to estimate the reweighting factors.
Fig. 1 shows the obtained factors normalized by the con-
figuration average. The fluctuation among configurations
is moderate, controlled within a factor of ∼ 5.
DWF’s explicitly break chiral symmetry due to finite

size Ls in the extra 5th dimension which can be quanti-
fied by an additive, residual, quark mass for each flavor.
In the chiral limit, amres(QCD) = 0.003148(46) for the en-
semble used in this study. The qQED studies [3, 4] show
that the valence EM charges further shift the quark mass

1000 2000 3000 4000
Hybrid MC trajectory

0

5 normalized reweighting factor

FIG. 1. Normalized reweighting factor w[Ũ , U ] with the EM
charge es = e on each gluon configuration.

by an amount of O(αEMamres(QCD)). The same effect
also arises from the sea quark charges. This lattice arti-
fact induces a term like e2sδrestrQ

2
s(3) in the SU(3) ChPT

formula (1). (Similar modifications are also needed in
the SU(2) formula (3).) Here we measure the sea EM
charge contribution to the residual mass and subtract it
from ∆M2

PS.
Due to finiteness of gauge configurations, contributions

arise from “hair”, or photon emission to, and absorption
from, the vacuum which averages to zero in the large
ensemble limit. In Ref. [3], it was shown that this hair is
a large source of noise in hadron correlators. The leading
unwanted piece can, however, be removed by averaging
over plus and minus EM charges, the so-called ±e trick,
and it provides a great advantage in which the unphysical
noise is exactly canceled in the valence sector [3, 4];

1

2
{O(+ev) +O(−ev)} = O(e2v), (8)

where O(ev) represents some observable with a valence
EM charge ev. There is also “hair” in the sea sector. To
remove the leading contribution from both the sea and
valence sectors, we use an averaging,

1

2
{O(+es,+ev) +O(−es,−ev)} = O(e2s , esev, e

2
v), (9)

in the reweighting. Note that the noise from hair associ-
ated with es is already small by virtue of Eq. (2).
Using the reweighting factor obtained in this work

and the meson correlators in the qQED study [4], the
reweighted meson correlators are obtained by Eq. (6).
An example of effective mass for the π+ meson is shown
in Fig. 2. For the χ2 fit results of the masses, we take the
same fit range (t = 9−16) as in Ref. [4] and also perform
both correlated (corr) and uncorrelated (uncorr) fits in
t. (Changing the fit range does not alter results beyond
the current statistical error.) To study the properties of
the data, we show jackknife samples of fit masses from
Fig. 2 in Fig. 3. Fig. 3 indicates that the statistical fluctu-
ation comes mostly from QCD and that significant corre-
lations exist between the charged and non-charged data.
These facts enable us to detect the qQED and fQED ef-
fects. With the reweighted data of the meson masses
calculated, chiral fits are performed to obtain the QED
LECs in Eqs. (1) and (3). Although C is known from
the qQED study [4], it provides a valuable consistency
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FIG. 2. An example of effective mass for the π+ meson
in non-QED(black), qQED(red) and fQED(blue) with am1 =
am3 = 0.01. The χ2 fit results of the masses with uncorrelated
fit in t are denoted by the horizontal lines. In fitting the fQED
data, χ2/d.o.f.(uncorr) = 0.11 and χ2/d.o.f.(corr) = 0.67.
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FIG. 3. Jackknife data of fit masses of Fig. 2 (uncorr).

check with the qQED result. In fitting for the LECs, we
anticipated a problematic hierarchy between the e2s and
esev terms, attributable to a double suppression factor in
the latter,

m1 −m3

m1 +m3
tr(Qs(3)Ms(3))

m

ΛQCD
, (10)

leaving the esev terms unresolved, where

Ms(3) =
1

m
diag(m4,m5,m6), m =

m4 +m5 +m6

3
. (11)

Although the difficulty can, in principle, be overcome
with enormous statistics, drastic improvements are pro-
vided by engineering sign flips in the EM charge. Besides
the ±e trick (Eqs. (8) and (9)), consider a basic transfor-
mation

T1 : (m1, q1;m3, q3) −→ (m3, q3;m1, q1), (12)

under which the meson system is invariant (CPT ). In
addition to T1, let us introduce transformations:

T2 : (m1, q1;m3, q3) −→ (m1,−q1;m3,−q3), (13)

T3 : (m1, q1;m3, q3) −→ (m3,−q1;m1,−q3). (14)

Eqs. (12)-(14) form a set of transformations that ex-
change two valence quark masses and EM charges with,
or without, flipping the sign of ev. Note that T2 and
T3 yield only partial invariances of Eqs. (1) and (3), in
the sense that the invariance holds only for specific terms
in each. In Tab. I, the transformation property of each
term in NLO PQChPT is summarized. While the e2s and
esev terms retain their even and oddness under T1 and T2
to all orders in quark mass, the transformation property
under T3 is not preserved at order higher than O(am) in
the quark mass expansion. At NLO in SU(2) PQChPT
in formula (3), the esev term is a mixture of even and

TABLE I. Transformation property under Eqs. (12)-(14) for
individual terms in NLO SU(3) and SU(2) PQChPT.

terms in NLO PQChPT associated with
transformation Y1, Y

′

1 , Y
′′

1 C, J , J ′ K, K′

T1 (Eq. (12)) even even even
T2 (Eq. (13)) even odd odd
T3 (Eq. (14)) even even odd

TABLE II. QED low-energy constants with µ = Λχ = 1 GeV.
Y1 is defined as Y1 = Y1trQ2

s(3) for SU(3) ChPT and Y1 =

Y1trQ2
s(2) + Y ′

1(trQs(2))
2 + Y ′′

1 q6trQs(2) for SU(2) ChPT. J
and K depict J = JtrQs(2) + J ′q6 and K = KtrQs(2) +K′q6,
respectively. The qQED values for C are quoted from Ref. [4],
whose values are obtained from 243×64 lattice and by infinite
volume ChPT formula. The values of B0 and F0 used in the
chiral fit are quoted from Ref. [7].

SU(3) ChPT SU(2) ChPT
uncorr corr uncorr corr

107C (qQED) 2.2(2.0) – 18.3(1.8) –
107C 8.4(4.3) 8.3(4.7) 20(14) 15(21)
102Y1 -5.0(3.6) -0.4(5.6) – –
102Y1 -3.1(2.2) -0.2(3.4) -3.0(2.2) -0.2(3.4)
104J – – -2.6(1.6) -3.3(2.8)
104K – – -3.1(6.9) -3.7(7.8)

odd contributions since the three-flavor feature (2) is ex-
plicitly broken. By adding and subtracting squared me-
son masses related by these transformations, each term
can be separately extracted and individually fit. Note
that we need at least three different sets of sea quark
EM charges to fully determine the fQED LECs using
the SU(2) ChPT; otherwise we only know their linear
combinations (see Tab. II). A useful choice would be:
[trQs(2) = 0, ∀q6], [trQs(2) #= 0, q6 = 0] and [trQs(2) #= 0,
q6 #= 0].
Figs. 4-9 show individual sea-quark charge contribu-

tions to the pion mass-squared, e2s , esev(T3-even) and
esev(T3-odd) parts. The lattice artifact ingredient, which
is caused by the finiteness of Ls, is subtracted from the
e2s term. In the figures, we can clearly see that the hi-
erarchy between the e2s and esev terms is O(102), as ex-
pected by the suppression given by Eq. (10), and the sep-
aration using the transformation T2 successfully works.
The valence EM charge dependence is constant for the
e2s term and linear for the eves terms, as expected from
the smallness of the fine structure constant in QED. We
perform uncorrelated chiral fits for the e2s , esev(T3-even)
and esev(T3-odd) terms separately setting µ to the chiral
scale Λχ = 1 GeV and obtain the LECs in Tab. II. In this
fit, we choose a minimal set of data with smaller valence
quark masses, and ignore q6 dependence in B0 because
of smallness of e2 and Y1. We also neglect finite volume
effects which could give significant shifts in the EM mass
spectrum. However, we remark that our quarks are rel-
atively heavy even though our lattice is small. Although

• by splitting the ratio of determinants into several factors (nth–root trick,
mass/charge preconditioning) the T.Izubuchi et al. and PACS-CS
collaborations have been able, on volumes L ∼ 3 fm, to take the
fluctuations of the reweighting factor under control!

• for m̂d 6= m̂u reweighting see also
J.Finkenrath F.Knechtli B.Leder, arXiv:1306.3962

J.Finkenrath and B.Leder talks

• note: since isospin breaking effects are very small, the differences between
isosymmetric QCD, electroquenched and full QED results may be smaller
than the statistical fluctuations, back on this point later. . .

• home message: 1 + 1 + 1 QED+QCD lattice simulations are feasible!

PACS-CS, Phys.Rev. D86(2012)
5

0 5 10 15 20 25 30
t

0.03

0.04

0.05

0.06

0.07

0.08

0.09

m
π
+

0 5 10 15 20 25 30
t

0.20

0.21

0.22

0.23

0.24

0.25

m
K

+

0 5 10 15 20 25 30
t

0.20

0.21

0.22

0.23

0.24

0.25

m
K

0

0 5 10 15 20 25
t

0.70

0.72

0.74

0.76

0.78

0.80

m
Ω
−

FIG. 3: Effective mass plots of mπ+ , mK+ , mK0 and mΩ− .
Blue horizontal bars represent the fit results with one stan-
dard deviation error band.
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noise for each determinant breakup. Red broken lines indicate
the experimental values.
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BMW arXiv:1306.2287, A.Portelli talk
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X �MX �QEDMX �QCDMX

N �0.68(39)(36) 1.59(30)(35) �2.28(25)(7)

⌃ �7.84(87)(72) 0.08(12)(34) �7.67(79)(105)

⌅ �7.16(76)(47) �1.29(15)(8) �5.87(76)(43)

TABLE I. Isospin breaking mass di↵erences in MeV for mem-
bers of the baryon octet. The first error is statistical and the
second is systematic. As discussed in the text, we guesstimate
the QED quenching uncertainties on the e.m. contributions to
be O(10%). Propagating the uncertainty in �QEDM2

K yields
an O(4%) error on the �m contributions. The quenching un-
certainties on the total splittings can then be obtained by
adding those of the e.m. and �m contributions in quadrature.
These guesstimates are not included in the results.

of by the p-value.
The �m corrections that we do not include in the sea

are NLO in isospin breaking and can safely be neglected.
The neglected O(↵) sea-quark contributions break fla-
vor SU(3). Moreover, large-Nc counting indicates that
they are O(1/Nc). Combining the two suppression fac-
tors yields an estimate (M⌃ �MN )/(NcMN ) ' 0.09. A
smaller estimate is obtained by supposing that these cor-
rections are typical quenching e↵ects [18] that are SU(3)-
suppressed, or by using [19] the NLO �PT results of [10].
However, in the absence of direct quantitative evidence,
it is safer to assume that the e.m. contributions to the
splittings carry an O(10%) QED quenching uncertainty.

Final results and discussion. Combining the methods
described above, we obtain our final results for the total
octet baryon isospin splittings �MN , �M⌃ and �M⌅ de-
fined above. These results, together with those obtained
for the e.m. and �m contributions, are summarized in
Table I. We also plot them in Fig. 2, together with the
experimental values for the full splittings. Our results
are compatible with experiment.

Concerning the separation into �m and e.m. contribu-
tions, there exist very few determinations of these quan-
tities up to now. In the review [20], hadron e.m. split-
tings were estimated using a variety of models and Cot-
tingham’s formula for the nucleon. These estimates are
compatible with our results within ⇠ 1.5 �. The e.m. nu-
cleon splitting has recently been re-evaluated with Cot-
tingham’s formula in [21], yielding a result which is in
agreement with ours. �MN has also been studied with
sum rules in [22].

Besides the entirely quenched, pioneering work of [23],
ours is the only one in which the baryon octet isosplit-
tings are fully computed. The only other lattice calcula-
tion of the full nucleon splitting is presented in [24][25].
Like ours, it implements QED only for valence quarks.
While their �QCDMN agrees very well with ours, agree-
ment is less good for the e.m. contribution and total split-
ting, which they find to be 0.38(7) MeV and �2.1(7) MeV,
respectively. That study was performed in rather small
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(M
eV

)

total
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FIG. 2. Summary of our results for the isospin mass splittings
of the octet baryons. Also shown are the individual contri-
butions to these splittings from the mass di↵erence mu �md

(QCD) and from e.m. (QED). The bands indicate the size
of the splittings and contributions. On the points, the er-
ror bars are the statistical and total uncertainties (statistical
and systematic combine in quadrature). For comparison, the
experimental values for the total splittings are also displayed.

volumes with a limited set of simulation parameters,
making an estimate of systematic errors di�cult. The
few other lattice calculations consider only the �m con-
tributions to the baryon splittings, in Nf=2 [7, 26] and
Nf=2+1 [27–29] simulations. The results of [26–29] rely
on imprecise phenomenological input to fix mu/md or
(mu �md). They use the estimate for �QEDM2

K of [30],
directly in [26, 28] and indirectly, through MILC’s re-
sults for mu/md [31], in [27]. In [29], the two values of
mu/md from [30, 32] are used as an input. The most
recent calculation [7] actually determines �QEDM2

K in
quenched QED, as we do here for Nf=2+1. �QCDMN

is computed in [7, 26, 27] while all three QCD splittings
are obtained in [28, 29]. Agreement with our results are
typically good. In all of these calculations, the range of
parameters explored is smaller than in ours, making it
more di�cult to control the physical limit.

The computation presented here is an encouraging step
toward a precise determination of octet baryon splittings,
which would constitute an ab initio confirmation that the
proton cannot decay weakly.

L.L. thanks Heiri Leutwyler for enlightening discus-
sions. Computations were performed using the PRACE
Research Infrastructure resource JUGEEN based in Ger-
many at FZ Jülich, with further HPC resources pro-
vided by GENCI-[IDRIS/CCRT] (grant 52275) and FZ
Jülich, as well as using clusters at Wuppertal and
CPT. This work was supported in part by the OCEVU
Excellence Laboratory, by CNRS grants GDR n02921
and PICS n04707, by EU grants FP7/2007-2013/ERC
n0208740, MRTN-CT-2006-035482 (FLAVIAnet) and by
DFG grants FO 502/2, SFB-TR 55.
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• a (trivial?) statement: QCD and QCD+QED are two different theories

(ef e)
2 −→ [mf −m0

f ]

J
µ(x)Jµ(0) −→ c1(x)1 +

X
f

h
c
f
m(x)mf + c

f
cr(x)

i
ψ̄fψf + cgs (x)GµνG

µν + · · ·

electromagnetic currents generate divergent contributions that redefine the vacuum energy, c1, the quark masses, cfm,

the quark critical masses (if chirality is broken), cfcr , and the strong coupling constant (the lattice spacing), cg

• physics is QCD+QED: the PACS-CS collaboration, used

n
M
π+ ,MK+ ,MK0 ,MΩ−

o
−→

n
m̂u, m̂d, m̂s, a

o

and, of course, the mass of the up and the mass of the down are different: that’s it!

• on the other hand, it is interesting (and useful in practice) to define differences as MQED+QCD
p −MQCD

p : how?
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• the parameters ~g0 of isosymmetric QCD can eventually be fixed independently from ~g by performing “standard” QCD
simulations, for example

n
M
π+ ,MK+ ,MΩ−

o
−→

n
m̂

0
ud, m̂

0
s, a

0
o

• on the other hand, when simulations of the full theory are performed, one can use the following matching condition

experiment −→ gi , ĝi(µ
?
) = ĝ

0
i (µ

?
) , g

0
i =

Zi(µ
?)

Z0
i (µ?)

gi −→ IB

• and define isospin breaking effects as ∆O = O(~g)−O(~g0) and Leading Isospin Breaking (LIB) effects as

∆O =

8<:e2 ∂

∂e2
+
h
g
2
s − (g

0
s)

2
i ∂

∂g2
s

+ [mf −m
0
f ]

∂

∂mf
+ [m

cr
f −m

cr
0 ]

∂

∂mcr
f

9=;O

• the counter–terms in the perturbative expansion do arise because the renormalization constants (the bare parameters) of
the two theories are different

• one could use a similar strategy to match the nf = 2 + x and nf = 2 + y theories in order to calculate quenching
effects
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Electromagnetic contributions to pseudoscalar masses C. Bernard

Figure 2: Typical SχPT fit to the squared-mass EM splitting ΔM2 vs. the sum of the valence-quark masses.
Only a small subset of the charged-meson data is shown. The red, blue and green curves correspond to three
different lattice spacings. The brown and black curves are continuum limits for ΔM2, without or with the
correction from χPT for physical sea-quark charges. The purple curves are the continuum limits for the
K+–K0 splitting (right), and the π+–“π0” splitting (left).

the kaon case, the adjustment is a very small correction. From the black lines for the π+ and
K+, we subtract the corresponding results for the neutral mesons, “π0” and K0, giving the purple
lines. Results for (M2

π+ −M2
“π0”)

γ and (M2
K+ −M2

K0)
γ are then obtained from the intersections of

the purple lines and the vertical dashed-dotted lines that give the location of the physical point for
each meson. The excellent agreement of the result for (M2

π+ −M2
“π0”)

γ and the experimental pion
splitting (horizontal dotted line) is accidental, since our result has roughly 20% total error.

We find the following preliminary results:

(M2
K+ −M2

K0)
γ = 2100(90)(250) MeV2 , (M2

K0)
γ = 901(8)(9)(?) MeV2

(M2
π+ −M2

“π0”)
γ = 1270(90)(230)(80) MeV2 , (M2

“π0”)
γ = 157.8(1.4)(1.7)(?) MeV2

ε = 0.65(7)(14)(10) (4)

The first two errors in each case are statistical and lattice systematic uncertainties. The latter error
comes largely from the effects of changing the assumptions entering into the chiral/continuum fit.
Note, however, that finite-volume errors are not included at present. We expect that ultimately they
will be a significant, but subdominant, source of error. The “?” for (M2

K0)
γ and (M2

“π0”)
γ represent

the effect of EM quenching and, for (M2
“π0”)

γ , the effect of neglected disconnected diagrams. These
errors are likely to be much larger than the small quoted errors. For (M2

π+−M2
“π0”)

γ and ε the third
error is a rough guess of the effect of neglecting disconnected diagrams, which we estimate by 50%
of the result for (M2

“π0”)
γ . If we redefine ε by replacing our computation of the pion EM splitting in

Eq. (1) with the experimental splitting, we get ε = 0.66(7)(20), which has larger chiral/continuum-
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PS (uncorr). Lines represent

uncorrelated fits to SU(2) PQChPT.
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FIG. 5. Same as Fig. 4 but for (q1, q3) = (+2/3,−1/3),
showing the valence quark mass dependence.
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showing the valence quark mass dependence.

0 1/3 2/3 1 4/3
q

1
 + q

3

-5×10
-5

0

(am
1
, am

3
) = (0.01, 0.01)

(am
1
, am

3
) = (0.02, 0.02)

(am
1
, am

3
) = (0.03, 0.03)

e
s
e

v
 (T

3
-odd) term in ΔM

PS

2
  (GeV)

2

FIG. 8. esev(T3-odd) contribution to M2
PS (uncorr). Lines

represent uncorrelated fits to SU(2) PQChPT.

0 0.02 0.04 0.06
a(m

1
+m

res(QCD)
) + a(m

3
+m

res(QCD)
)

-1×10
-5

-5×10
-6

0

5×10
-6

am
3
 = 0.010

am
3
 = 0.020

am
3
 = 0.030

e
s
e

v
 (T

3
-odd) term in ΔM

PS

2
  (GeV)

2

FIG. 9. Same as Fig. 8 but for (q1, q3) = (+2/3,+1/3),
showing the valence quark mass dependence.

the statistical error is large, the value of LEC C is consis-
tent with that obtained in qQED [4]. (The lattice volume
and the quark masses used in the chiral fit are different
between this work and Ref. [4]. The important fact, how-
ever, is that the order of magnitude is consistent between
them.) The size of Y1 seems to be the same as the other
QED LECs in O(e2vm) terms determined in qQED [4],
which means the sea EM charge effect is comparable to
the valence one except for the Dashen term.
In this study incorporating sea quark EM charges in

2+1 flavor lattice QED+QCD, we have shown that the
QED LECs are accessible using the reweighting method,
and that the sea quark LECs are the same size as the
valence ones, as expected. In our analysis, the sign flip
engineering of EM charges proved to be highly effective,
similar to the ±e trick for the valence sector [3, 4]. Since
this is a first computation of sea EM charge effects in
large scale computation, our primary aim is to show the
method works and the size of the statistical error. Checks
for systematic errors including the discretization error,
which is a few percent on this lattice for pure QCD [15],
finite volume, and so on, are being investigated on larger
lattices, 243 × 64 and 323 × 64. Implementation of fur-
ther algorithmic improvements, for example, low-mode
averaging to increase statistics, are also in progress.
We are grateful to USQCD and the RBRC for pro-

viding computer time on the DOE and RBRC QCDOC
supercomputers at BNL for the computations reported
here. T. B and T. Ishikawa were supported by the U.S.

DOE under Grant No. DE-FG02-92ER40716. M.H. is
supported by JSPS Grants-in-Aid for Scientific Research
No. (S)22224003 and No. (C)20540261. T. Izubuchi is
partially supported by JSPS Kakenhi grant No. 22540301
and No. 23105715. T. Izubuchi and C. J are supported
by DOE under Contract No. DE-AC02-98CH10886.
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the statistical error is large, the value of LEC C is consis-
tent with that obtained in qQED [4]. (The lattice volume
and the quark masses used in the chiral fit are different
between this work and Ref. [4]. The important fact, how-
ever, is that the order of magnitude is consistent between
them.) The size of Y1 seems to be the same as the other
QED LECs in O(e2vm) terms determined in qQED [4],
which means the sea EM charge effect is comparable to
the valence one except for the Dashen term.
In this study incorporating sea quark EM charges in

2+1 flavor lattice QED+QCD, we have shown that the
QED LECs are accessible using the reweighting method,
and that the sea quark LECs are the same size as the
valence ones, as expected. In our analysis, the sign flip
engineering of EM charges proved to be highly effective,
similar to the ±e trick for the valence sector [3, 4]. Since
this is a first computation of sea EM charge effects in
large scale computation, our primary aim is to show the
method works and the size of the statistical error. Checks
for systematic errors including the discretization error,
which is a few percent on this lattice for pure QCD [15],
finite volume, and so on, are being investigated on larger
lattices, 243 × 64 and 323 × 64. Implementation of fur-
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PS (uncorr). Lines represent
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FIG. 5. Same as Fig. 4 but for (q1, q3) = (+2/3,−1/3),
showing the valence quark mass dependence.
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FIG. 9. Same as Fig. 8 but for (q1, q3) = (+2/3,+1/3),
showing the valence quark mass dependence.

the statistical error is large, the value of LEC C is consis-
tent with that obtained in qQED [4]. (The lattice volume
and the quark masses used in the chiral fit are different
between this work and Ref. [4]. The important fact, how-
ever, is that the order of magnitude is consistent between
them.) The size of Y1 seems to be the same as the other
QED LECs in O(e2vm) terms determined in qQED [4],
which means the sea EM charge effect is comparable to
the valence one except for the Dashen term.
In this study incorporating sea quark EM charges in

2+1 flavor lattice QED+QCD, we have shown that the
QED LECs are accessible using the reweighting method,
and that the sea quark LECs are the same size as the
valence ones, as expected. In our analysis, the sign flip
engineering of EM charges proved to be highly effective,
similar to the ±e trick for the valence sector [3, 4]. Since
this is a first computation of sea EM charge effects in
large scale computation, our primary aim is to show the
method works and the size of the statistical error. Checks
for systematic errors including the discretization error,
which is a few percent on this lattice for pure QCD [15],
finite volume, and so on, are being investigated on larger
lattices, 243 × 64 and 323 × 64. Implementation of fur-
ther algorithmic improvements, for example, low-mode
averaging to increase statistics, are also in progress.
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• all the terms allowed by symmetries are present in χpt formulae

M
2
12 = B̂(m̂1 + m̂2) + ê

2
Ĉ(e1 − e2)

2
+ [ · · · ]

that can be reexpressed in terms of the parameters of isosymmetric QCD by redefining the low energy constants

m̂i = (1 + ê
2
δi)m̂

0
i −→ M

2
12 = B̂(m̂

0
1 + m̂

0
2) + ê

2
Ĉ(e1 − e2)

2
+
h
· · · + ê

2
B̂(δ1m̂

0
1 + δ2m̂

0
2)
i

• the matching is somehow “automatic” but the separation prescription has to be specified when quoting results for the
QED and QCD IB effects

• note: whenever lattice data are fitted by neglecting O[α̂em(m̂d − m̂u)] terms, one is actually calculating LIB effects
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• LIB effects can be calculated directly by expanding the lattice path– integral w.r.t. α̂em ∼ (m̂d − m̂u)/ΛQCD

O(~g) =

˙
R[U,A;~g] O[U,A;~g]

¸A,~g0

˙
R[U,A;~g]

¸A,~g0 =

˙ “
1 + Ṙ + · · ·

” “
O + Ȯ + · · ·

” ¸
˙

1 + Ṙ + · · ·
¸ = O(~g

0
) + ∆O

• the building blocks for the graphical notation, used here as a device to do calculations, are the corrections to the quark
propagator

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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¸
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FIG. 4. e2s contribution to M2
PS (uncorr). Lines represent

uncorrelated fits to SU(2) PQChPT.
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FIG. 5. Same as Fig. 4 but for (q1, q3) = (+2/3,−1/3),
showing the valence quark mass dependence.
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represent uncorrelated fits to SU(2) PQChPT.
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FIG. 7. Same as Fig. 6 but for (q1, q3) = (+2/3,−1/3),
showing the valence quark mass dependence.
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FIG. 9. Same as Fig. 8 but for (q1, q3) = (+2/3,+1/3),
showing the valence quark mass dependence.

the statistical error is large, the value of LEC C is consis-
tent with that obtained in qQED [4]. (The lattice volume
and the quark masses used in the chiral fit are different
between this work and Ref. [4]. The important fact, how-
ever, is that the order of magnitude is consistent between
them.) The size of Y1 seems to be the same as the other
QED LECs in O(e2vm) terms determined in qQED [4],
which means the sea EM charge effect is comparable to
the valence one except for the Dashen term.
In this study incorporating sea quark EM charges in

2+1 flavor lattice QED+QCD, we have shown that the
QED LECs are accessible using the reweighting method,
and that the sea quark LECs are the same size as the
valence ones, as expected. In our analysis, the sign flip
engineering of EM charges proved to be highly effective,
similar to the ±e trick for the valence sector [3, 4]. Since
this is a first computation of sea EM charge effects in
large scale computation, our primary aim is to show the
method works and the size of the statistical error. Checks
for systematic errors including the discretization error,
which is a few percent on this lattice for pure QCD [15],
finite volume, and so on, are being investigated on larger
lattices, 243 × 64 and 323 × 64. Implementation of fur-
ther algorithmic improvements, for example, low-mode
averaging to increase statistics, are also in progress.
We are grateful to USQCD and the RBRC for pro-

viding computer time on the DOE and RBRC QCDOC
supercomputers at BNL for the computations reported
here. T. B and T. Ishikawa were supported by the U.S.
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partially supported by JSPS Kakenhi grant No. 22540301
and No. 23105715. T. Izubuchi and C. J are supported
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• isosymmetric vacuum polarization effects, those that do not “read” the charge of the valence quarks, are expected to be
sizable (confirmed by T.Izubuchi et al.)

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)
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PS (uncorr). Lines represent

uncorrelated fits to SU(2) PQChPT.
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FIG. 5. Same as Fig. 4 but for (q1, q3) = (+2/3,−1/3),
showing the valence quark mass dependence.
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showing the valence quark mass dependence.

the statistical error is large, the value of LEC C is consis-
tent with that obtained in qQED [4]. (The lattice volume
and the quark masses used in the chiral fit are different
between this work and Ref. [4]. The important fact, how-
ever, is that the order of magnitude is consistent between
them.) The size of Y1 seems to be the same as the other
QED LECs in O(e2vm) terms determined in qQED [4],
which means the sea EM charge effect is comparable to
the valence one except for the Dashen term.
In this study incorporating sea quark EM charges in

2+1 flavor lattice QED+QCD, we have shown that the
QED LECs are accessible using the reweighting method,
and that the sea quark LECs are the same size as the
valence ones, as expected. In our analysis, the sign flip
engineering of EM charges proved to be highly effective,
similar to the ±e trick for the valence sector [3, 4]. Since
this is a first computation of sea EM charge effects in
large scale computation, our primary aim is to show the
method works and the size of the statistical error. Checks
for systematic errors including the discretization error,
which is a few percent on this lattice for pure QCD [15],
finite volume, and so on, are being investigated on larger
lattices, 243 × 64 and 323 × 64. Implementation of fur-
ther algorithmic improvements, for example, low-mode
averaging to increase statistics, are also in progress.
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• vacuum polarization effects proportional to the charge of the valence quarks are a flavour SU(3) breaking effect; can be
estimated by the knowledge of the leading order χpt QED low energy constant

The graphical representation given in the last of the previous formulas, corresponding to the derivative of the quark
propagator with respect to the critical mass, is specific to the lattice Dirac operators used in this work and the ! signs
correspond, respectively, to D"

f defined in Eq. (30). In the case of standard Wilson fermions red and grey ‘‘blobs’’ would
coincide. All the disconnected contributions coming from the reweighting factor can be readily obtained by using Eq. (52).
For example,

In writing Eqs. (52) and (53) we assumed that the derivatives have been evaluated at ~g ¼ ~g0 and that the functional integral
h$iA with respect to the photon field has already been performed. Note however that, in order to apply the operator! to the
product ðR½U;A; ~g'O½U;A; ~g'Þ [see Eqs. (50) and (51) above], at fixedQED gauge background one also needs the following
expressions for the first order derivatives of the quark propagators and of the quark determinants with respect to e:

A concrete example of application of the formulas given in Eqs. (52) and (53) is represented by the correction to the S"f
quark propagators worked out below

Here quarks propagators of different flavors have been
drawn with different colors and different lines.

The formulas above have been explicitly displayed not
only because they represent the building blocks of the
derivation of the LIB corrections to the hadron masses
discussed in the following, but also for illustrating the
implications of the electroquenched approximation [see
Eq. (35) above]. This approximation is not required in
the calculation of the pion mass splitting because the quark
disconnected diagrams containing sea quark loops are ex-
actly canceled in the difference of !M!þ and !M!0 [see

Eq. (66) below]. This does not happen in the case of the
kaon mass difference; see Eq. (69). Quark disconnected
diagrams are noisy and difficult to calculate and, for this
reason, we have derived the numerical results for MKþ *
MK0 within the electroquenched approximation. The per-
turbative expansion of the electroquenched theory, i.e. the
theory corresponding to the action Se¼0

sea for the sea quarks,
is obtained in practice by setting gs ¼ g0s and

rf½U;A; ~g0' ¼ 1: (56)

G.M. DE DIVITIIS et al. PHYSICAL REVIEW D 00

10



hadron masses vs matrix elements

• consider a two-point correlator in the full theory (mu 6= md and ef 6= 0)

CHH (t;~g) = 〈 OH (t) O†
H

(0) 〉~g −→ e
MH =

CHH (t− 1;~g)

CHH (t;~g)
+ non leading exps.

where OH is an interpolating operator having the quantum numbers of a given hadron H

• if H is a charged particle, the correlator CHH (t;~g) is not QED gauge invariant; for this reason it is not possible, in
general, to extract physical informations directly from the residues of the different poles; to physical decay rates do
contribute diagrams as

• on the other hand, the mass of the hadron is gauge invariant and finite in the continuum and infinite volume limits,
provided that the parameters of the actions have been properly renormalized; it follows that the ratio
CHH (t− 1;~g)/CHH (t;~g) is both gauge and renormalization group (RGI) invariant

• by applying the differential operator ∆ to full theory correlators one gets

CHH (t;~g)

CHH (t;~g0)
= 1 +

∆CHH (t;~g0)

CHH (t;~g0)
+ · · · = c− t(MH −M

0
H ) + . . .
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LIB corrections to pion masses (i)

• in order to calculate the LIB
corrections to M

π+ and,
separately, to M

π0 one
needs to determine the quark
(critical) masses and the
lattice spacing in the full
theory

• since M
π+ −Mπ0 is

already an isospin breaking
effect, many terms cancel in
the difference and one
gets. . .

where mud ¼ ðmd þmuÞ=2 is the bare isosymmetric light quark mass. In the case of the neutral pion we obtain

The sea quark propagators have been drawn in blue (and with a different line) and the isosymmetric vacuum polarization
diagrams have not been displayed explicitly. By combining the previous expressions we find the elegant formula

All the isosymmetric vacuum polarization diagrams cancel
by taking the difference of!M!þ and!M!0 together with
the disconnected sea quark loop contributions explicitly
shown in Eqs. (64) and (65). Note, in particular, the can-
cellation of the corrections/counterterms corresponding to
the variation of the symmetric up-down quark mass mud %
m0

ud and to the variation of the strong coupling constant
g2s % ðg0sÞ2. This is a general feature: at first order of the
perturbative expansion in "̂em and m̂d % m̂u, the isosym-
metric corrections coming from the variation of the stong
gauge coupling (the lattice spacing), of mud and of the
heavier quark masses do not contribute to observables that

vanish in the isosymmetric theory, like the mass splitting
M!þ %M!0 . Furthermore, as already stressed, the electric
charge does not need to be renormalized at this order and,
for all these reasons, the expression for the pion mass
splitting can be considered a ‘‘clean’’ theoretical prediction.
On the other hand, the lattice calculation of the discon-

nected diagram present in Eq. (66) is a highly nontrivial
numerical problem and we shall neglect this contribution
in this paper. Relying on the same arguments that lead to
the derivation of the flavor SUð3Þ version of Dashen’s
theorem [see Eq. (39)], it can be shown that the neutral
pion mass has to vanish in the limit m̂u ¼ m̂d ¼ 0 for
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FIG. 5: Ratio of K0 to K+ propagators to detect the mass
difference mK0 −mK+ . Our results (black symbol) are con-
sistent with the expected slope from the experimental value
of mK0 −mK+ (red line).
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• there are no contributions proportional to m̂d − m̂u: the pion mass difference at this order is a pure QED effect

• note: sea quark effects are not neglected, they cancel in the difference!

• the electric charge does not renormalize at this order (a problem that must instead be faced at higher orders) and the
previous expression is finite,

e
2

= ê
2

= 4πα̂em =
4π

137

• it can be shown (Dashen’s theorem, more to say later) that the disconnected diagram is of O(α̂emm̂ud) and it can be
considered, for physical quark masses, a higher order effect

• for all these reasons the pion mass difference can be considered a “clean” theoretical prediction and a benchmarking
observable

• it can be computed as done by the PACS-CS collaboration in the case of the kaon mass difference or by calculating
“directly” the diagrams (correlators) appearing in the formula . . .



numerical calculation of the diagrams
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FIG. 2. An example of effective mass for the π+ meson
in non-QED(black), qQED(red) and fQED(blue) with am1 =
am3 = 0.01. The χ2 fit results of the masses with uncorrelated
fit in t are denoted by the horizontal lines. In fitting the fQED
data, χ2/d.o.f.(uncorr) = 0.11 and χ2/d.o.f.(corr) = 0.67.
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FIG. 3. Jackknife data of fit masses of Fig. 2 (uncorr).

check with the qQED result. In fitting for the LECs, we
anticipated a problematic hierarchy between the e2s and
esev terms, attributable to a double suppression factor in
the latter,

m1 −m3

m1 +m3
tr(Qs(3)Ms(3))

m

ΛQCD
, (10)

leaving the esev terms unresolved, where

Ms(3) =
1

m
diag(m4,m5,m6), m =

m4 +m5 +m6

3
. (11)

Although the difficulty can, in principle, be overcome
with enormous statistics, drastic improvements are pro-
vided by engineering sign flips in the EM charge. Besides
the ±e trick (Eqs. (8) and (9)), consider a basic transfor-
mation

T1 : (m1, q1;m3, q3) −→ (m3, q3;m1, q1), (12)

under which the meson system is invariant (CPT ). In
addition to T1, let us introduce transformations:

T2 : (m1, q1;m3, q3) −→ (m1,−q1;m3,−q3), (13)

T3 : (m1, q1;m3, q3) −→ (m3,−q1;m1,−q3). (14)

Eqs. (12)-(14) form a set of transformations that ex-
change two valence quark masses and EM charges with,
or without, flipping the sign of ev. Note that T2 and
T3 yield only partial invariances of Eqs. (1) and (3), in
the sense that the invariance holds only for specific terms
in each. In Tab. I, the transformation property of each
term in NLO PQChPT is summarized. While the e2s and
esev terms retain their even and oddness under T1 and T2
to all orders in quark mass, the transformation property
under T3 is not preserved at order higher than O(am) in
the quark mass expansion. At NLO in SU(2) PQChPT
in formula (3), the esev term is a mixture of even and

TABLE I. Transformation property under Eqs. (12)-(14) for
individual terms in NLO SU(3) and SU(2) PQChPT.

terms in NLO PQChPT associated with
transformation Y1, Y

′

1 , Y
′′

1 C, J , J ′ K, K′

T1 (Eq. (12)) even even even
T2 (Eq. (13)) even odd odd
T3 (Eq. (14)) even even odd

TABLE II. QED low-energy constants with µ = Λχ = 1 GeV.
Y1 is defined as Y1 = Y1trQ2

s(3) for SU(3) ChPT and Y1 =

Y1trQ2
s(2) + Y ′

1(trQs(2))
2 + Y ′′

1 q6trQs(2) for SU(2) ChPT. J
and K depict J = JtrQs(2) + J ′q6 and K = KtrQs(2) +K′q6,
respectively. The qQED values for C are quoted from Ref. [4],
whose values are obtained from 243×64 lattice and by infinite
volume ChPT formula. The values of B0 and F0 used in the
chiral fit are quoted from Ref. [7].

SU(3) ChPT SU(2) ChPT
uncorr corr uncorr corr

107C (qQED) 2.2(2.0) – 18.3(1.8) –
107C 8.4(4.3) 8.3(4.7) 20(14) 15(21)
102Y1 -5.0(3.6) -0.4(5.6) – –
102Y1 -3.1(2.2) -0.2(3.4) -3.0(2.2) -0.2(3.4)
104J – – -2.6(1.6) -3.3(2.8)
104K – – -3.1(6.9) -3.7(7.8)

odd contributions since the three-flavor feature (2) is ex-
plicitly broken. By adding and subtracting squared me-
son masses related by these transformations, each term
can be separately extracted and individually fit. Note
that we need at least three different sets of sea quark
EM charges to fully determine the fQED LECs using
the SU(2) ChPT; otherwise we only know their linear
combinations (see Tab. II). A useful choice would be:
[trQs(2) = 0, ∀q6], [trQs(2) #= 0, q6 = 0] and [trQs(2) #= 0,
q6 #= 0].
Figs. 4-9 show individual sea-quark charge contribu-

tions to the pion mass-squared, e2s , esev(T3-even) and
esev(T3-odd) parts. The lattice artifact ingredient, which
is caused by the finiteness of Ls, is subtracted from the
e2s term. In the figures, we can clearly see that the hi-
erarchy between the e2s and esev terms is O(102), as ex-
pected by the suppression given by Eq. (10), and the sep-
aration using the transformation T2 successfully works.
The valence EM charge dependence is constant for the
e2s term and linear for the eves terms, as expected from
the smallness of the fine structure constant in QED. We
perform uncorrelated chiral fits for the e2s , esev(T3-even)
and esev(T3-odd) terms separately setting µ to the chiral
scale Λχ = 1 GeV and obtain the LECs in Tab. II. In this
fit, we choose a minimal set of data with smaller valence
quark masses, and ignore q6 dependence in B0 because
of smallness of e2 and Y1. We also neglect finite volume
effects which could give significant shifts in the EM mass
spectrum. However, we remark that our quarks are rel-
atively heavy even though our lattice is small. Although
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Eqs. (12)-(14) form a set of transformations that ex-
change two valence quark masses and EM charges with,
or without, flipping the sign of ev. Note that T2 and
T3 yield only partial invariances of Eqs. (1) and (3), in
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plicitly broken. By adding and subtracting squared me-
son masses related by these transformations, each term
can be separately extracted and individually fit. Note
that we need at least three different sets of sea quark
EM charges to fully determine the fQED LECs using
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aration using the transformation T2 successfully works.
The valence EM charge dependence is constant for the
e2s term and linear for the eves terms, as expected from
the smallness of the fine structure constant in QED. We
perform uncorrelated chiral fits for the e2s , esev(T3-even)
and esev(T3-odd) terms separately setting µ to the chiral
scale Λχ = 1 GeV and obtain the LECs in Tab. II. In this
fit, we choose a minimal set of data with smaller valence
quark masses, and ignore q6 dependence in B0 because
of smallness of e2 and Y1. We also neglect finite volume
effects which could give significant shifts in the EM mass
spectrum. However, we remark that our quarks are rel-
atively heavy even though our lattice is small. Although

• isospin breaking effects are small because very
small coefficients multiply sizable hadronic matrix
elements

˙
Bµ(x)Bν (y)

¸B = δµν δ(x − y)

P
⊥
φ(x) = φ(x) −

1

V

X
y
φ(y)

[−∇−ρ ∇
+
ρ ]Cµ[B; x] = P

⊥
Bµ(x)

˙
Bµ(y)Cν [B; x]

¸B = D
⊥
µν (x − y)

• electromagnetic corrections can be calculated by introducing
real Z2 noise vectors and two sequential quark propagator
inversions

−∇2 = P⊥

fi flB
= 1 ,

fi flB
=

Df = , Df =

* +B
=



LIB corrections to pion masses (iii)

• home message: leading isospin breaking effects can
also be calculated by expanding the lattice
path–integral

−

• the point now is: QED is a long range unconfined
interaction, how large are finite volume effects?

• for pseudoscalar meson masses these have been
estimated in χpt coupled to electromagnetism

M.Hayakawa, S.Uno Prog.Theor.Phys. 120(2008)
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large (or small) finite volume effects

BMW prel. ∆M2
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Dashen’s theorem and light quark masses
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FIG. 11. Finite volume e↵ect in the measured EM splittings. All of the data points have q1 = 2/3

and q3 = �1/3. Circles and squares correspond to 243 and 163 lattice sizes, respectively. The solid

line is from the finite volume fit on 243 ensembles. The dashed line is the theoretical prediction for

163 lattices based on the LEC’s extracted from 243 finite volume fit. The fit curves are evaluated

for degenerate unitary light quarks.

these O(a2 + mresa) discretization errors are small in pure DWF QCD, and they should

largely cancel in the splittings. Even assuming they do not cancel, there is no reason to

expect they are enhanced over the pure QCD case. In the first QCD calculation using the

243 ensemble, it was estimated that scaling errors were at about the four percent level for

low energy quantities like the pion decay constant and the kaon [7]. Since then, a new

calculation at the same physical volume but smaller lattice spacing has shown this estimate

was about right, or perhaps a bit conservative [15–17]. Of course, here we are interested

only in the mass splittings. The pion and kaon masses are fixed to their continuum values,

so they have no scaling errors. Instead, the lattice spacing errors enter in the LEC’s and

the physical quark masses. Therefore we assign a robust four percent scaling error to the

quark masses, which will be eliminated in up-coming calculations on the finer lattice spacing

ensemble [15–17]. This error also encompasses the uncertainty in setting the lattice scale

itself, which as mentioned earlier di↵ers by about 2 ⇠ 3 percent from the scale given in

L=24

L=16

L=16 predicted from L=24 fit

MILC, arXiv:1301.7137

Electromagnetic contributions to pseudoscalar masses C. Bernard

of taste violations caused by photons; that is the reason that we focus here only on the data with
physical quark charges. Given that photon-induced taste violations are relatively small, however,
one could expand the fit function in powers of αEM = e2/(4π). Thus, inclusion of α2EM analytic
terms to the fit function should allow the higher-charge data to be fit. That approach seems to work,
and will be explored more in the future. For more details on EM taste-violating effects, see Ref. [4].

Results and Outlook. – Figure 2 shows a typical fit of our data for ΔM2 with physical quark
charges to Eq. (3) (with added analytic NNLO terms). We fit partially quenched charged- and
neutral-meson data simultaneously, but only the (unitary or approximately unitary) charged-meson
data is shown in the plot. This fit has 55 data points and 26 parameters; other fits have as many
as 120 data points, and from 20 to 30 fit parameters, depending on how many of the NNLO terms
are included, and whether small variations with a2 of the LO and NLO low-energy constants are
allowed. The covariance matrix of the data is nearly singular, and the statistics are insufficient to
determine it with enough precision to yield good correlated fits, so almost all fits currently used
are uncorrelated. The fit shown has an (uncorrelated) p value of 0.09. We note that what appear to
be big discretization effects are actually due in large part to mistunings of the strange-quark mass,
which is off by about 50% on the a = 0.12 fm ensembles and 25% on the a= 0.09 fm ensembles,
but only by 2% on the 0.06 fm ensemble.

The black and brown lines in Fig. 2 show the fit after setting valence and sea masses equal,
adjusting ms to its physical value, and extrapolating to the continuum. The black lines adjust the
sea charges to their physical values using NLO χPT, while the brown line keeps the sea quarks
uncharged. In the pion case, the adjustment vanishes identically, so no brown line is visible. In

Figure 1: A sampling of our partially quenched data in r1 units for EM splittings of pseudoscalar mesons
with charge±ephys, plotted versus the sum of the valence-quark masses. For clarity, only about a quarter of
the data is shown. The red squares and magenta crosses show results for the two ensembles that differ only
by the spatial volume: 203 and 283, respectively. The vertical black bar labeled “BMW” shows the expected
difference for kaons between these two volumes, based on the results from the BMW collaboration [8]. Next
to it, the two points encircled in black are our “kaon-like” points for the volumes.

4

RM123, Phys.Rev. D87(2013)
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• RM123, BMW, MILC: cutoff effects are reasonably small

• the large (20–30%) finite volume effects predicted by χpt may be over-estimated and/or can be compensated by the
chiral logs; BMW ( L ∈ [1.9, 6] fm) is on the way to settle the question. . .

• home message: finite volume effects are the issue! who is surprised?



LIB corrections to kaon masses

M
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• the kaon mass difference can be used to determine ∆m̂ud = (m̂d − m̂u)/2 and to separate QCD from QED isospin
breaking effects; first note
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LIB corrections to kaon masses

M
K+ −MK0 = −2∆mud∂t − (∆mcru −∆mcrd )∂t

+ (e2u − e
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− −

+ (eu − ed)e2
X
f

ef ∂t

• the kaon mass difference can be used to determine ∆m̂ud = (m̂d − m̂u)/2 and to separate QCD from QED isospin
breaking effects; then

QED = −
2m̂ud

Zud
∂t − (∆mcru −∆mcrd )∂t + (e2u − e

2
d)e2∂t

− −

QCD = −2∆m̂ud

0BBBBB@Z0
ψ̄ψ

∂t

1CCCCCA

• the QCD contribution is finite and RGI; the QED contribution is finite only if both counter-terms are present, though the
first has a very small numerical impact. what about the second?



tuning critical masses

RM123, Phys.Rev. D87(2013)
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FIG. 1. The QCD residual mass for 163 (upper) and 243 (lower) lattice sizes. The data correspond

to unitary mass points. The linear chiral extrapolation to the mf = 0 limit is also shown on the

plot.
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• with (here Twisted Mass) Wilson and DMW fermions, the shift of the (residual) critical masses of the quarks, a linear
divergent counter–term, can be calculated by restoring the validity of chiral WT identities
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(the breaking of) Dashen’s theorem

• the electric charge operator is diagonal in flavour space

ψ =

0@ u
d
s

1A Q̂ =
ê

3

0@ 2 0 0
0 −1 0
0 0 −1

1A
• if the down and the strange have the same mass (md = ms −→ m̂d = m̂s) we have

m̂d = m̂s −→ M
π+ = M

K+

• in the chiral limit, to each flavour generator commuting with the electric charge corresponds a Godlstone’s boson, even
in the presence of electromagnetic interactions; in particularh

T̂a, Q̂
i

= 0 −→ ∂µ
h
ψ̄iγ5γµT̂

aψ
i

= ∂µAaµ(x) = 0

m̂u = m̂d = 0 −→ M
π0 = 0

m̂u = m̂d = m̂s = 0 −→ M
π0 = M

K0 = 0

• note, since LIB corrections to the pion mass difference are a pure electromagnetic effect, one has
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m̂u/m̂d and εγ

• the value of εγ depends upon the renormalization prescription
used to separate QED from QCD IB effects

εγ =

h
M2
K+ −M

2
K0

iQED
−
h
M2
π+ −M

2
π0

iQED
M2
π+ −M

2
π0

• it is needed to calculate the light quark masses by starting from
QCD (m̂u 6= m̂d) lattice simulations and using the QCD
contribution to the kaon mass splitting as “experimental” input
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• the electroquenched uncertainty on εγ can be estimated, at
present, by using χpt results, it is of the order of 10%

J.Bijnens, N.Danielsson Phys.Rev. D75(2007)

M.Hayakawa, S.Uno Prog.Theor.Phys. 120(2008)

RM123, Phys.Rev. D87(2013)
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FIG. 12. Breaking of Dashen’s theorem for the quenched QED case. The unphysical contribution

�mres(q2
1 + q2

3) has been subtracted from the data. Data for two values of the strange quark, 0.02

and 0.03, are shown. The curves correspond to the SU(3) fits (upper panel) and SU(2) fits (lower

panel). The cyan bands denote the infinite volume extrapolations with one standard deviation

statistical errors, using the LEC’s extracted from the finite volume fits; the sea and strange quark

masses are fixed at their physical values.



baryon masses

BMW arXiv:1306.2287, A.Portelli talk3
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FIG. 1. Example of FV corrections to �QEDM⌅, plotted as a
function of 1/L. The dependence of the lattice results on all
other variables has been subtracted using a fit of the type de-
scribed in the text. Each point type corresponds to one of our
five lattice spacings: a ' 0.11 fm (square), 0.09 fm (circle),
0.07 fm (up triangle), 0.06 fm (down triangle) and 0.05 fm
(diamond). The fit, which is linear in 1/L, is performed with
a cut M⇡+  500 MeV. It is plotted as a solid curve, with its
1� prediction band. It has a �2/dof = 59./67.

are su�ciently small that they may be described with a
low-order polynomial in 1/L. This is confirmed by the
data in Fig. 1, which show no sensitivity to terms beyond
linear order in 1/L. The same features are observed in
our results for �MN ⌘ Mp�Mn, but with larger statisti-
cal errors. Thus we find it su�cient to extrapolate these
quantities linearly to the infinite volume limit. The situ-
ation is di↵erent for �M⌃ ⌘ �[�I3=2]M⌃ = M⌃+�M⌃� ,
where the 1/L dependence is very small, as expected.

Concerning discretization e↵ects, the improvement of
the QCD action implies O(↵sa, a2) corrections to AX and
BX . However, due to the lack of improvement in the
coupling of the photon to quarks, discretization e↵ects
on AX are O(a). In our analysis, we include O(a) QED
discretization e↵ects to AX as well as O(↵sa, a2) QCD
ones to BX .

Combining all of this information yields a 9 parameter
description of each of the mass splittings. In the notation
of Eq. (1), this corresponds to:

AX = aX
0 + aX

1 [M2
⇡ � (Mph

⇡ )2] + aX
2 [M2

K� � (Mph
K�)2]

+aX
3 a + aX

4

1
L

, (2)

BX = bX
0 + bX

1 [M2
⇡ � (Mph

⇡ )2] + bX
2 [M2

K� � (Mph
K�)2]

+bX
3 f(a) (3)

where the aX
i and bX

i are the parameters and f(a) = ↵sa
or a2, alternatively. These functional forms characterize
the dependence of the mass splittings on the parame-
ters required to reach the physical point and to sepa-
rate them into �m and e.m. contributions. However, the
many competing dependencies make this study particu-
larly challenging.

In our fits we keep only parameters whose fitted values
are more than one standard deviation away from zero.
For �M2

K , all parameters are relevant. We also allow
for di↵erent parameter combinations if they satisfy the
previous requirement and cannot be eliminated by their
poor fit quality.

Error estimation. Our analysis methodology makes no
assumptions beyond those of the fundamental theory, ex-
cept for the isospin symmetry which is maintained in the
sea and whose consequences we discuss below. However
the analysis does depend on several choices that can be
sources of systematic uncertainties.

To deal with these uncertainties, we proceed with the
method put forward in [9]. More specifically, we con-
sider the following variations in our analysis procedure.
For the time ranges of the correlator fits, we consider 2
initial fit times, one for which we expect negligible ex-
cited state contributions and a second more aggressive
one. This estimates the uncertainty due to contributions
from excited states. Regarding the choice of scale setting
quantities, we consider 2 possibilities: the mass of the
⌦� and that of the isospin averaged ⌅. To estimate the
uncertainty associated with the truncation of the Taylor
expansion used to interpolate these two masses to physi-
cal M⇡+ , we vary the fit ranges by excluding all data with
pion mass above 400 and 450 MeV. To estimate part of
this same uncertainty for the isospin splittings, we con-
sider cuts at M⇡+ = 450 and 500 MeV, since their M2

⇡+

dependence is very mild. Part of the uncertainty associ-
ated with the continuum extrapolation is determined by
considering either ↵sa or a2 discretization errors. Finally,
to estimate any additional uncertainty arising from the
truncation of these expansions, we consider the result of
replacing either AX or BX by Padé expressions. These
are obtained by considering that the expansions of AX

and BX in (2-3) are the first two terms of a geometric se-
ries which we resum. This resummation is not applied to
the FV corrections. Instead we try adding a 1/L2 term
to either the Taylor or Padé forms. In all case, we find
the coe�cient of this term to be consistent with zero.

These variations lead to 27 = 128 di↵erent fits for
each of the isospin splittings and parameter combina-
tions. Correlating these with the 128 fits used to de-
termine (�Mph)2, and allowing various parameter com-
binations but discarding fits with irrelevant parameters,
we obtain between 64 and 256 results for each observ-
able. The central value of a splitting is then the mean
of these results, weighted by the p-value. The systematic
error is the standard deviation. Because we account for
all correlations, these fit qualities are meaningful. The
whole procedure is repeated for 2000 bootstrap samples
and the statistical error is the standard deviation of the
weighted mean over these samples. We have also checked
that the results are changed only negligibly (far less than
the calculated errors) if they are weighted by 1 instead

4

X �MX �QEDMX �QCDMX

N �0.68(39)(36) 1.59(30)(35) �2.28(25)(7)

⌃ �7.84(87)(72) 0.08(12)(34) �7.67(79)(105)

⌅ �7.16(76)(47) �1.29(15)(8) �5.87(76)(43)

TABLE I. Isospin breaking mass di↵erences in MeV for mem-
bers of the baryon octet. The first error is statistical and the
second is systematic. As discussed in the text, we guesstimate
the QED quenching uncertainties on the e.m. contributions to
be O(10%). Propagating the uncertainty in �QEDM2

K yields
an O(4%) error on the �m contributions. The quenching un-
certainties on the total splittings can then be obtained by
adding those of the e.m. and �m contributions in quadrature.
These guesstimates are not included in the results.

of by the p-value.
The �m corrections that we do not include in the sea

are NLO in isospin breaking and can safely be neglected.
The neglected O(↵) sea-quark contributions break fla-
vor SU(3). Moreover, large-Nc counting indicates that
they are O(1/Nc). Combining the two suppression fac-
tors yields an estimate (M⌃ �MN )/(NcMN ) ' 0.09. A
smaller estimate is obtained by supposing that these cor-
rections are typical quenching e↵ects [18] that are SU(3)-
suppressed, or by using [19] the NLO �PT results of [10].
However, in the absence of direct quantitative evidence,
it is safer to assume that the e.m. contributions to the
splittings carry an O(10%) QED quenching uncertainty.

Final results and discussion. Combining the methods
described above, we obtain our final results for the total
octet baryon isospin splittings �MN , �M⌃ and �M⌅ de-
fined above. These results, together with those obtained
for the e.m. and �m contributions, are summarized in
Table I. We also plot them in Fig. 2, together with the
experimental values for the full splittings. Our results
are compatible with experiment.

Concerning the separation into �m and e.m. contribu-
tions, there exist very few determinations of these quan-
tities up to now. In the review [20], hadron e.m. split-
tings were estimated using a variety of models and Cot-
tingham’s formula for the nucleon. These estimates are
compatible with our results within ⇠ 1.5 �. The e.m. nu-
cleon splitting has recently been re-evaluated with Cot-
tingham’s formula in [21], yielding a result which is in
agreement with ours. �MN has also been studied with
sum rules in [22].

Besides the entirely quenched, pioneering work of [23],
ours is the only one in which the baryon octet isosplit-
tings are fully computed. The only other lattice calcula-
tion of the full nucleon splitting is presented in [24][25].
Like ours, it implements QED only for valence quarks.
While their �QCDMN agrees very well with ours, agree-
ment is less good for the e.m. contribution and total split-
ting, which they find to be 0.38(7) MeV and �2.1(7) MeV,
respectively. That study was performed in rather small
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FIG. 2. Summary of our results for the isospin mass splittings
of the octet baryons. Also shown are the individual contri-
butions to these splittings from the mass di↵erence mu �md

(QCD) and from e.m. (QED). The bands indicate the size
of the splittings and contributions. On the points, the er-
ror bars are the statistical and total uncertainties (statistical
and systematic combine in quadrature). For comparison, the
experimental values for the total splittings are also displayed.

volumes with a limited set of simulation parameters,
making an estimate of systematic errors di�cult. The
few other lattice calculations consider only the �m con-
tributions to the baryon splittings, in Nf=2 [7, 26] and
Nf=2+1 [27–29] simulations. The results of [26–29] rely
on imprecise phenomenological input to fix mu/md or
(mu �md). They use the estimate for �QEDM2

K of [30],
directly in [26, 28] and indirectly, through MILC’s re-
sults for mu/md [31], in [27]. In [29], the two values of
mu/md from [30, 32] are used as an input. The most
recent calculation [7] actually determines �QEDM2

K in
quenched QED, as we do here for Nf=2+1. �QCDMN

is computed in [7, 26, 27] while all three QCD splittings
are obtained in [28, 29]. Agreement with our results are
typically good. In all of these calculations, the range of
parameters explored is smaller than in ours, making it
more di�cult to control the physical limit.

The computation presented here is an encouraging step
toward a precise determination of octet baryon splittings,
which would constitute an ab initio confirmation that the
proton cannot decay weakly.
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• the BMW collaboration has recently completed a calculation of the
octet baryon mass splittings

• also in this case the dominant source of uncertainty may come from
finite volume effects, they can be as large as 80%!!!

• the other uncertainties are still too large to draw conclusions

• once QED and QCD isospin breaking corrections have been
separated, one can calculate only the (simpler/cheaper) QCD
corrections (m̂u 6= m̂d). . .

see J.Zanotti talk MeV
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QCD corrections to matrix elements: F
K+/Fπ+

V.Cirigliano,H.Neufeld Phys.Lett.B700 (2011), RM123, Phys.Rev. D87(2013), HPQCD, arXiv:1303.1670

• the physical observable is the decay rate Γ[K+ → `+ν(γ)]; this is ultraviolet
and infrared finite, gauge invariant, unambiguous

• it is only neglecting electromagnetic corrections that the hadronic and leptonic
tensors can be factorized

• using the matching prescription defined above and by considering the ∆m̂ud
QCD corrections to kaons two point functions, we have the QCD RGI invariant
formula
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• without factorizing the small coefficient ∆m0
ud, one can also calculate

“directly” the difference

−

• remember: pion two point functions do not get corrected at O(∆m0
ud)
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conclusions and outlooks

• lattice calculation of QCD+QED isospin breaking effects on the hadron spectrum are feasible, even including the QED
unquenching effects

• one can use reweighting and start from the full theory path integral. the fluctuations of the reweighting factor can be
kept under control: shown by T.Izubuchi et al. and PACS-CS on volumes L ∼ 3 fm, scaling with the volume?

• or expand the relevant correlators with respect to m̂d − m̂u and α̂em; here to avoid the electroquenched
approximation disconnected diagrams have to be calculated

• cutoff effects are reasonably small, shown by the RM123, BMW and MILC collaborations that obtain results in the
continuum limit for pseudoscalar and baryon mass splittings

• finite volume effects may be very large: this is not surprising, we are putting photons in a box! to settle this point we
should be able to significantly reduce the other uncertainties

• on the other hand, thanks to the efforts of the different collaborations, we are now calculating not just guessing isospin
breaking effects! a large uncertainty on IB effects is a small and reliable uncertainty on the given observable

1% × 30% = 0.3%

• lattice calculation of QCD+QED IB corrections to hadronic matrix elements are much more complicated: further
theoretical work is needed!

• however, once a well defined prescription to separate QED from QCD IB effects has been implemented, the QCD
corrections to quantities such as the K`2 decay rate can be (and have been) obtained



BACKUP

collaboration quark action n
QCD
f

n
QED
f

Mπ (MeV) Na , [(fm)] NL , [(fm)] method

PACS-CS npSW 2 + 1 1 + 1 + 1 135 1, [0.09, 0.09] 1, [2.9, 2.9] eieAU

RBC-UKQCD DW 2 + 1 1 + 1 + 1 250 1, [0.11, 0.11] 2, [1.8, 2.7] eieAU

MILC Asqtad 2 + 1 0 233 3, [0.06, 0.12] 5, [2.4, 3.6] eieAU

BMW 2-HEX tlSW 2 + 1 0 120 5, [0.05, 0.12] 17, [1.9, 6] eieAU

RM123 TM 2 0 270 4, [0.05, 0.10] 6, [1.6, 2.6] (1 + ieA)U

NPLQCD Asqtad/DW 2 + 1 0 290 1, [0.12, 0.12] 1, [2.5, 2.5] U

UK-QCD-SF npSW 2 + 1 0 290 2, [0.06, 0.075] 2, [1.8, 2.4] U

• at present several collaborations are providing lattice results including the effects of isospin breaking
see also A.Portelli, arXiv:1307.6056

• pure QCD projects, U , obtain results with m̂d 6= m̂u but neglecting electromagnetic interactions

• QED+QCD projects use different methods: (1 + iêA)U means that isospin breaking effects are treated at first order
with respect to α̂em and (m̂d − m̂u)/ΛQCD

• first results beyond the electroquenched approximation, n
QED
f

6= 0, have recently been obtained


