Ab Initio Calculation of Finite Temperature Charmonium Potentials

P. Wynne M. Evans¹, Chris Allton¹, Pietro Giudice^{1,2} and Jon-Ivar Skullerud³

¹Swansea University ²Münster University ³University of Maynooth

Progress made on arXiv:1303.5331

Lattice XXXI Mainz

August 2, 2013

J/ψ Suppression

At large color charge density, inter-quark potential is modified.

Outline

Observable

Derivation of formula for potential in terms of observable

Simulation and results

Local-Extended Charmonium Correlators J^{\dagger}_{Γ} $(\vec{0},0)$ (\vec{r},τ) J_{Γ}

Define general charmonium interpolator,

$$J_{\Gamma}(x;\mathbf{r}) = \bar{c}(x)\Gamma U(x,x+\mathbf{r})c(x+\mathbf{r})$$

then correlation functions can be written,

$$C_{\Gamma}(\mathbf{r},\tau) = \sum_{\mathbf{x}} \langle J_{\Gamma}(\mathbf{x},\tau;\mathbf{r}) J_{\Gamma}^{\dagger}(0;\mathbf{0}) \rangle$$
$$= \sum_{j} \frac{\psi_{j}^{*}(\mathbf{0})\psi_{j}(\mathbf{r})}{2E_{j}} \left(e^{-E_{j}\tau} + e^{-E_{j}(N_{\tau}-\tau)} \right)$$

Convolving Propagators (in Coulomb Gauge)

$$\begin{split} C_{\Gamma}(\mathbf{r},\tau) &= \sum_{\mathbf{x}} \langle 0 | \bar{c}(\mathbf{x},\tau) \Gamma c(\mathbf{x}+\mathbf{r},\tau) \bar{c}(\mathbf{0},0) \Gamma c(\mathbf{0},t) | 0 \rangle \\ &= -\sum_{\mathbf{x}} S_{\bar{c}}^{\dagger}(\mathbf{x}+\mathbf{r},\tau:\mathbf{0},0) S_{c}(\mathbf{0},0:\mathbf{x},\tau) \\ S(\mathbf{y}) &= \frac{1}{V} \sum_{\mathbf{q}} \tilde{S}(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{y}}, \end{split}$$

$$\begin{split} C_{\Gamma}(\mathbf{r},\tau) &= -\sum_{\mathbf{x}} \frac{1}{V^2} \sum_{\mathbf{p},\mathbf{q}} \tilde{S}_{\bar{c}}^{\dagger}(\mathbf{p}) \tilde{S}_c(\mathbf{q}) e^{i\mathbf{p}\cdot(\mathbf{x}+\mathbf{r})} e^{i\mathbf{q}\cdot(\mathbf{x})} \\ &= -\frac{1}{V} \sum_{\mathbf{p},\mathbf{q}} \tilde{S}_{\bar{c}}^{\dagger}(\mathbf{p}) \tilde{S}_c(\mathbf{q}) \delta_{\mathbf{p}+\mathbf{q},\mathbf{0}} e^{i\mathbf{p}\cdot(\mathbf{r})} \\ &= -\frac{1}{V} \sum_{\mathbf{p}} \tilde{S}_{\bar{c}}^{\dagger}(\mathbf{p}) \tilde{S}_c(-\mathbf{p}) e^{i\mathbf{p}\cdot\mathbf{r}} \\ &= priv. \ comm. \ S. \ Aoki \end{split}$$

HAL QCD Approach HAL QCD Collaboration 2012

Consider only forward moving contribution of $C_{\Gamma}(\mathbf{r}, \tau)$,

$$C_{\Gamma}(\mathbf{r},\tau) = \sum_{j} \frac{\psi_{j}^{*}(\mathbf{0})\psi_{j}(\mathbf{r})}{2E_{j}} e^{-E_{j}\tau}$$
$$= \sum_{j} \Psi_{j}(\mathbf{r})e^{-E_{j}\tau}$$

Differentiate w.r.t. τ ,

$$\frac{\partial}{\partial \tau} C_{\Gamma}(\mathbf{r},\tau) = -\sum_{j} E_{j} \Psi_{j}(\mathbf{r}) e^{-E_{j}\tau}$$

Now consider Schrödinger equation for $\Psi_j(\mathbf{r})$,

$$\left(-rac{
abla^2}{2\mu} + V_{\Gamma}(\mathbf{r})
ight)\Psi_j(\mathbf{r}) = E_j\Psi_j(\mathbf{r})$$

S-Waves

The S-wave potential can be expressed as:

$$V_{\Gamma}(\mathbf{r}) = V_C(\mathbf{r}) + s_1 \cdot s_2 V_S(\mathbf{r}).$$

 $s_1 \cdot s_2 = -3/4, 1/4$ for the pseudoscalar and vector respectively.

Hence,

$$V_C(\mathbf{r}) = rac{1}{4} V_{PS}(\mathbf{r}) + rac{3}{4} V_V(\mathbf{r})$$

and

$$V_S(\mathbf{r}) = V_V(\mathbf{r}) - V_{PS}(\mathbf{r})$$

Simulation Details

N_s	N_{τ}	T(MeV)	T/T_c	$N_{\rm cfg}$
24	40	140	0.76	500
24	36	156	0.84	500
24	32	175	0.95	1000
24	28	201	1.08	1000
24	24	232	1.26	1000

Ensembles

Two-Plaquette Symanzik gauge action, $N_f = 2 + 1$ dynamical sea quarks, Anisotropic Clover fermion action with stout-link smearing, Anistropy: $a_s/a_\tau = 3.5$.

Measurement

Anisotropic Clover fermion action for stout-link smearing,

Pseudoscalar effective mass tuned to experimental η_c mass,

Gaussian-smeared sources.

QDP++/Chroma: Edwards and Joó

Results

Charmonium Time Slice Correlators $(N_s = 24, N_\tau = 40, \text{Pseudoscalar})$

$$V_{\Gamma}(\mathbf{r}) = \left(\frac{1}{2\mu} - \frac{1}{\partial\tau}\right) \frac{1}{C_{\Gamma}(\mathbf{r},\tau)}$$

O. Kaczmarek, F. Zantow, Phys. Rev. D71, 114510 (2005)
 Y. Burnier, A. Rothkopf, Phys. Rev. D86, 051503 (2012)

Spin-Dependent Potential

Conclusions

A temperature dependence consistent with deconfinement is observed with the HAL QCD approach

To investigate the highest temperatures require configurations with many points in temporal dimension

Next step is to calculate Sommer's r_I to obtain potential at more values of r