Bottomonium spectral functions at 7" > 0

A signal for the quark-gluon plasma from the lattice
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Cusp =276y ]

e Dissocation of heavy-quark bound states in a deconfined
medium contributes to suppression of quarkonium yield
in heavy-ion collions.

e Can suppression patterns provide a thermometer for
quark-gluon plasma? :

S PP (2 - 278 T,

e Competing effects such as statistical recombination less
pronounced for heavier quarks. e ol

e Lattice can complement other approaches such as
analytical weak-coupling results from effective field
theories and potential models. oy
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Earlier results from numerical simulations [FASTSUM, 1109.4496] from previous
generation of Ny = 2 ensembles:

e concluded the survival of the 1S state above the crossover temperature T¢,

e indicated melting of P-wave directly above T, (R a——

while it was observed from the spectral functions:

e that the 2S-states were suppressed at 7' ~ 1.77%.
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The road to reality
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Non-relativistic QCD (NRQCD) on the lattice

e Requires only my > T, cf. weak-coupling approaches which require ordering of
other relevant scales.

V' Tuning of my via dispersion relation due to state-independent energy shift in
NRQCD.
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The road to reality
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Modification of correlators at 7" > 0
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e P-wave correlator exhibits stronger T'-dependence.
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Dependence on n
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? Lighter bottomonium more spatially extended and color-Debye screening more
effective.

Bott i t T 0
ottomonium a > 4/9



Non-relativistic quarks at 7" > 0
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Non-relativistic quarks at 7" > 0
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Non-relativistic quarks at 7" > 0

[ dw cosh(wT = /2T) .
) = /0 o sinh(w/2T) ) — / p(w =+ wo)

e The T-independence of the kernel reflects the fact that the heavy quark is not in
thermal equilibrium with the medium.

e No constant contribution to correlator.
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Non-relativistic quarks at 7" > 0

_ [*° dw cosh(wT — w/QT) oo dw e
) = /0 o sinh(w/2T) ) — / plw + wo)

e The T-independence of the kernel reflects the fact that the heavy quark is not in
thermal equilibrium with the medium.

e No constant contribution to correlator.

e The continuum hadronic spectral function for free quarks is known:

e—woT 1 &
Pfree(w) & waa(w) - Gfree(T) & Wa as = 57 ap = 5

[Burnier, Laine, Vepsalainen, '07]
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Non-relativistic quarks at 7" > 0

_ [*° dw cosh(wT — /2T) oo dw e
) = /0 o sinh(w/2T) ) — / plw + wo)

The T-independence of the kernel reflects the fact that the heavy quark is not in
thermal equilibrium with the medium.

e No constant contribution to correlator.

e The continuum hadronic spectral function for free quarks is known:

@ =T 1 3
a1’ as = 9’ @p = 9

Pfree(w) & waa(w) = Gfree('r) &
[Burnier, Laine, Vepsalainen, '07]

e We might expect such ‘almost-free’ behaviour above the dissocation
temperatures. To this end, define:

G'(1)  G=Gree

G(71)

Vet (T) = —7 woT + a + 1.
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Maximum entropy method (MEM)

Given finite stochastic correlator data the inverse Laplace transform is an ill-posed
problem. Resort to Bayesian inference of most plausible spectral function.

[Asakawa, Hatsuda, Nakahara '02]
e Dependence on prior information or default model must be tested.

e Use Bryan's algorithm.

Bottomonium at T' > 0

6/9



Maximum entropy method (MEM)

m(*So)
Pm,‘,MEM

70 | R
60 | 4
50 | R
40 + 4
30 4
20 g
10 + 4
0 L L A L /\ L /\A L L L
0 02 04 06 08 1 1.2 14 16
w/my

pw)/mj

Preliminary zero-T spectral function

Given finite stochastic correlator data the inverse Laplace transform is an ill-posed
problem. Resort to Bayesian inference of most plausible spectral function.

[Asakawa, Hatsuda, Nakahara '02]
e Dependence on prior information or default model must be tested.

e Use Bryan's algorithm.

Bottomonium at T' > 0

6/9



Maximum entropy method (MEM)

60 L PYMEM

40 + g
30 g

pw)/mj

20 - E

{1 O N

0 02 04 06 08 1 1.2 14 16
w/my

Preliminary zero-T spectral function

Given finite stochastic correlator data the inverse Laplace transform is an ill-posed
problem. Resort to Bayesian inference of most plausible spectral function.

[Asakawa, Hatsuda, Nakahara '02]
e Dependence on prior information or default model must be tested.

e Use Bryan's algorithm.

Bottomonium at T' > 0

6/9



Temperature dependence: S-waves
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e Y(2S) peak is indiscernible at higher T', while ground state peak is still present
up to highest temperatures, consistent with previous study.
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Temperature dependence: P-waves
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Temperature dependence: P-waves
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state xp1(1P) peak disappears directly above T..
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Temperature dependence: P-waves

Single exponential
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e Ground state xp1(1P) peak disappears directly above T..
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Temperature dependence: P-waves
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e Ground state xp1(1P) peak disappears directly above T..

e Direct analysis of correlators supports interpretation of ‘nearly-free’ quark
dynamics.
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Conclusions and further work

We have seen. ..

o MEM reproducing zero-temperature S-wave energies.

Spectral functions at finite 7" signal of 1P above 7.
e Direct analysis of correlators suggest consistent picture.
e Survival of 1S peak up to at least 1.97¢, while 2S peak broadens and is suppressed.

e Consistency between spectral functions from first and second generation ensembles.
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Conclusions and further work

We have seen. ..

o MEM reproducing zero-temperature S-wave energies.

Spectral functions at finite 7" signal of 1P above 7.
e Direct analysis of correlators suggest consistent picture.
e Survival of 1S peak up to at least 1.97¢, while 2S peak broadens and is suppressed.

e Consistency between spectral functions from first and second generation ensembles.

To do:

e Thorough investigation of default model dependence.
e Examine momentum-dependence of peak positions.

e Investigate new approaches for constructing spectral function: extended search
space. ..

e Tuning new generation of ensembles with £ = 7.
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Free lattice spectral functions
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Free lattice spectral functions
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Dependence on default model (First generation ensembles)
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Dependence on default model (First generation ensembles)
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