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Outline

Quick overview of lattice parameters and the method used.

Spectral functions of charmonium at zero momentum.

Use of the conserved vector current for non-zero momenta.

Spectral functions of charmonium at non-zero momenta.
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Parameters

The lattices used are ensembles of anisotropic gauge
configurations with anisotropy ξ = as/aτ = 6.
The spatial lattice spacing is as = 0.167 fm and the number
of lattice sites in the spatial direction is Ns = 12.
The fermion action is a fine Hamber-Wu action in the spatial
directions and a coarse Wilson action in the temporal
direction.
The number of configurations for each ensemble are thus.

Nτ T (MeV) Ncfgs

16 459 1000
18 408 700
20 368 1000
24 306 500
28 263 1000
32 230 875
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Maximum Entropy Method

The method employed for this research is the Maximum Entropy
Method (MEM), as presented by Asakawa, Nakahara and Hatsuda
in their 2001 paper [arxiv:hep-lat/0011040v2].

MEM is a well-established way of determining spectral functions on
the lattice.

The spectral function ρ(ω) is related to the imaginary time
correlator G (τ) as follows.

G (τ) =

∞∫
0

dω

2π
ρ(ω)

cosh[ω(τ − β
2 )]

sinh(βω2 )
.

The most probable spectral function is extracted from the Monte
Carlo data in this analysis.
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Default Models

MEM relies on input information known as a default model, m(ω).
The output should have no dependence on these functions.

The default models used are given below.
m0 is a free parameter, and m1 is scaled with the temperature.

Default Models

m(ω) = m0ω
2

m(ω) = m0

m(ω) = m0ω(m1 + ω)
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Conserved vector current

The spatial component of the conserved vector current is

Vi (~p, x) =
∑
~x

e−i~p.~x [ψ̄(x)(Γ
(0)
i ψ)(x)

+ ψ̄(x − î)(Γ
(−1)
i ψ)(x)

+ ψ̄(x + î)(Γ
(1)
i ψ)(x)

+ ψ̄(x + 2̂i)(Γ
(2)
i ψ)(x)]

The temporal component is the usual conserved Wilson
current.

Vt(x) =
1

2
[ψ̄(x + t̂)(r +γ0)U†t (x)ψ(x)− ψ̄(x)(r−γ0)Ut(x)ψ(x + t̂)]
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Decomposing the vector current

The conserved vector current is used since it requires no
renormalisation.

In order to calculate the heavy quark diffusion, we need the
longitudinal polarisation of the conserved vector current.

The vector meson correlator is decomposed into transverse
and longitudinal polarisations as follows.

Decomposition of vector meson correlator into its polarisations

Vij(τ,~p) =

(
δij −

pipj
p2

)
VT (τ,~p) +

pipj
p2

VL(τ,~p)
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Spectral functions for zero momentum

Spectral functions for zero momentum charmonium using default
model m(ω) = m0ω(m1 + ω)
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Spectral functions for non-zero momenta

Spectral functions for the
longitudinal component of
non-zero momenta using
default model
m(ω) = m0ω(m1 + ω).

Spectral functions for the
transverse component of
non-zero momenta using
default model
m(ω) = m0ω(m1 + ω).
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Default model dependence

The shape of the spectral functions should not depend on the
input default models.
This plot shows the default model dependence for the
transverse component of momentum p2 = 1 on the 123 × 28
lattice.
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Low frequency zone

Our aim is to calculate the transport coefficients. For this we need
to examine the low frequency zone of the spectral functions.

This plot shows the low frequency zones for each default model of
the spectral function for zero momentum charmonium from the
123 × 32 lattice.
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Conclusions and Outlook

We have calculated the spectral functions for lattice sizes
123 × Nτ for τ = 16, 18, 20, 24, 28, 32 with an anisotropy of
ξ = 6. The calculations were done for both zero momentum
and non-zero momentum.

The spectral functions for non-zero momentum charmonium
quickly become unreliable, and only the 123 × 28 and
123 × 32 lattices give us significant insight.

The results obtained do not depend heavily on the default
models m(ω).

For future work, the low frequency zones will be examined and
transport coefficients determined.

Nf = 2 + 1 with finer spatial lattice spacing will also be
examined in future.
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Hamber-Wu action.

SHW =
1

a

{∑
x

ψ̄(x)ψ(x)

− 4κ

3

∑
x ,µ

[
ψ̄(x)(r−γµ)Uµ(x)ψ(x+µ̂)

− ψ̄(x)(r+γµ)U†µ(x−µ̂)ψ(x−µ̂)
]

+
κ

6U0

∑
x ,µ

[
ψ̄(x)(2r − γµ)Uµ(x)Uµ(x + µ̂)ψ(x + 2µ̂)

− ψ̄(x)(2r + γµ)U†µ(x − µ̂)U†µ(x − 2µ̂)ψ(x − 2µ̂)
]}

.
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Spatial part of conserved vector current.

V A
i (x) =− 2

3
ψ̄(x)(rA − γi )Ui (x)ψ(x + ı̂)

+
2

3
ψ̄(x + ı̂)(rA + γi )U

†
i (x)ψ(x)

+
1

12us

[
ψ̄(x)(2rA − γi )Ui (x)Ui (x + ı̂)ψ(x + 2ı̂)

+ (x → x − ı̂)
]

− 1

12us

[
ψ̄(x + ı̂)(2rA + γi )U

†
i (x)U†i (x − ı̂)ψ(x − ı̂)

+ (x → x + ı̂)
]
.
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