Determination of Karsch Coefficients for 2-Colour QCD

Seamus Cotter¹ P. Giudice² S. Hands³ J. Skullerud¹

¹National University of Ireland

²University of Muenster

³Swansea University

Lattice, 2013

Outline

Project

- *QC*₂*D*
- The Action and Parameters
- The Karsch Coefficients

2 Process

- Static Quark Potential
- The Sideways Potential
- Meson Dispersion

3 Results

- Four dimensional fit
- Trace Anomaly
- Energy Density

Project
Process
Results
Summary

QC2D The Action and Parameters The Karsch Coefficients

(令曰) (令曰) (令曰) (令曰)

• QC_2D is a QCD-like theory which doesn't have a sign problem for even number of flavours.

- It has a hadronic phase and deconfinement.
- Include a diquark source term to counter effects of IR fluctuations. Physical limit J to zero must be taken.

Project
Process
Results
Summary

QC2D The Action and Parameters The Karsch Coefficients

(令曰) (令曰) (令曰) (令曰)

- QC_2D is a QCD-like theory which doesn't have a sign problem for even number of flavours.
- It has a hadronic phase and deconfinement.
- Include a diquark source term to counter effects of IR fluctuations. Physical limit J to zero must be taken.

Project
Process
Results
Summary

QC2D The Action and Parameters The Karsch Coefficients

- QC_2D is a QCD-like theory which doesn't have a sign problem for even number of flavours.
- It has a hadronic phase and deconfinement.
- Include a diquark source term to counter effects of IR fluctuations. Physical limit J to zero must be taken.

QC₂D The Action and Parameters The Karsch Coefficients

(日本) (日本) (日本) (日本)

The Action.

• We use the ordinary Wilson plaquette action for the gauge sector.

$$S_{G}\left(eta,\gamma_{g}
ight)=-rac{eta}{N_{c}}\left[rac{1}{\gamma_{g}}\sum$$
 Re Tr $U_{ij}\left(x
ight)+\gamma_{g}\sum$ Re Tr $U_{i0}\left(x
ight)
ight]$

• For the fermion sector, we use an unimproved Wilson fermion action with hopping parameter κ .

$$S_{Q}(m,\gamma_{q}) = \sum \left[\bar{\psi}^{\alpha}(x) \psi^{\alpha}(x) + \gamma_{q} \kappa \bar{\psi}^{\alpha}(x) (D_{0}\psi)^{\alpha}(x) \right] + \kappa \sum \left[\bar{\psi}^{\alpha}(x) (D_{i}\psi)^{\alpha}(x) \right]$$

The Action.

• We use the ordinary Wilson plaquette action for the gauge sector.

$$S_{G}\left(eta,\gamma_{g}
ight)=-rac{eta}{N_{c}}\left[rac{1}{\gamma_{g}}\sum$$
Re Tr $U_{ij}\left(x
ight)+\gamma_{g}\sum$ Re Tr $U_{i0}\left(x
ight)
ight]$

• For the fermion sector, we use an unimproved Wilson fermion action with hopping parameter *κ*.

$$S_Q(m,\gamma_q) = \sum \left[\bar{\psi}^{\alpha}(x) \psi^{\alpha}(x) + \gamma_q \kappa \bar{\psi}^{\alpha}(x) (D_0 \psi)^{\alpha}(x) \right] \\ + \kappa \sum \left[\bar{\psi}^{\alpha}(x) (D_i \psi)^{\alpha}(x) \right]$$

▶ ★ Ξ ▶ ★ Ξ ▶ Ξ Ξ

Project
Process
Results
Summary

QC₂D The Action and Parameters The Karsch Coefficients

The Parameters

- Vary parameters around a central set, in this case $\beta = 1.9$, $\kappa = 0.1680$ on a $12^3 \times 24$ lattice which gives lattice spacing a = 0.178(6) fm and a pion mass $m_{\pi} = 717(25)$ MeV.
- Define:

$$\begin{aligned} \beta_s &= \frac{\beta}{\gamma_g}, \qquad \beta_t = \gamma_g, \qquad \kappa_t = \gamma_q \kappa, \qquad \kappa_s = \kappa \\ \xi_+ &= \frac{1}{2} \{ \xi_g + \xi_q \} \qquad \qquad \xi_- = \frac{1}{2} \{ \xi_g - \xi_q \} \end{aligned}$$

What are they?

Use the Derivative Method to calculate energy density

$$\varepsilon(T) = -\frac{\xi}{N_s^3 a_s^3 N_t a_t} \left\langle \left| \frac{\partial S(\beta, \kappa, \gamma_g, \gamma_q)}{\partial \xi} \right|_{a_s} \right\rangle + \mu n_q$$

Need $\frac{\partial \beta}{\partial \xi}$, $\frac{\partial \gamma_g}{\partial \xi}$, $\frac{\partial \gamma_q}{\partial \xi}$, $\frac{\partial \kappa}{\partial \xi}$

 $\begin{array}{rcl} \xi_{+} - 1 &=& a_{1} \Delta \gamma_{g} + b_{1} \Delta \gamma_{q} + c_{1} \Delta \beta + d_{1} \Delta \kappa \\ \frac{a - a_{0}}{a_{0}} &=& a_{2} \Delta \gamma_{g} + b_{2} \Delta \gamma_{q} + c_{2} \Delta \beta + d_{2} \Delta \kappa \\ \frac{M - M_{0}}{M_{0}} &=& a_{3} \Delta \gamma_{g} + b_{3} \Delta \gamma_{q} + c_{3} \Delta \beta + d_{3} \Delta \kappa \\ \xi_{-} &=& a_{4} \Delta \gamma_{g} + b_{4} \Delta \gamma_{q} + c_{4} \Delta \beta + d_{4} \Delta \kappa \end{array}$

Also get the β functions $\frac{\partial \beta}{\partial a_s}, \frac{\partial \kappa}{\partial a_s}$

• • E • • E • E

What are they?

Use the Derivative Method to calculate energy density

$$\varepsilon(T) = -\frac{\xi}{N_s^3 a_s^3 N_t a_t} \left\langle \left| \frac{\partial S(\beta, \kappa, \gamma_g, \gamma_q)}{\partial \xi} \right|_{a_s} \right\rangle + \mu n_q$$

Need
$$\frac{\partial \beta}{\partial \xi}, \frac{\partial \gamma_g}{\partial \xi}, \frac{\partial \gamma_q}{\partial \xi}, \frac{\partial \kappa}{\partial \xi}$$

$$\begin{aligned} \xi_+ - 1 &= a_1 \Delta \gamma_g + b_1 \Delta \gamma_q + c_1 \Delta \beta + d_1 \Delta \kappa \\ \frac{a - a_0}{a_0} &= a_2 \Delta \gamma_g + b_2 \Delta \gamma_q + c_2 \Delta \beta + d_2 \Delta \kappa \\ \frac{M - M_0}{M_0} &= a_3 \Delta \gamma_g + b_3 \Delta \gamma_q + c_3 \Delta \beta + d_3 \Delta \kappa \\ \xi_- &= a_4 \Delta \gamma_g + b_4 \Delta \gamma_q + c_4 \Delta \beta + d_4 \Delta \kappa \end{aligned}$$

Also get the β functions $\frac{\partial \beta}{\partial a_s}, \frac{\partial \kappa}{\partial a_s}$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ъ

What are they?

Use the Derivative Method to calculate energy density

$$\varepsilon(T) = -\frac{\xi}{N_s^3 a_s^3 N_t a_t} \left\langle \left| \frac{\partial S(\beta, \kappa, \gamma_g, \gamma_q)}{\partial \xi} \right|_{a_s} \right\rangle + \mu n_q$$

Need
$$\frac{\partial \beta}{\partial \xi}, \frac{\partial \gamma_g}{\partial \xi}, \frac{\partial \gamma_q}{\partial \xi}, \frac{\partial \kappa}{\partial \xi}$$

$$\begin{aligned} \xi_+ - 1 &= a_1 \Delta \gamma_g + b_1 \Delta \gamma_q + c_1 \Delta \beta + d_1 \Delta \kappa \\ \frac{a - a_0}{a_0} &= a_2 \Delta \gamma_g + b_2 \Delta \gamma_q + c_2 \Delta \beta + d_2 \Delta \kappa \\ \frac{M - M_0}{M_0} &= a_3 \Delta \gamma_g + b_3 \Delta \gamma_q + c_3 \Delta \beta + d_3 \Delta \kappa \\ \xi_- &= a_4 \Delta \gamma_g + b_4 \Delta \gamma_q + c_4 \Delta \beta + d_4 \Delta \kappa \end{aligned}$$

Also get the β functions $\frac{\partial \beta}{\partial a_s}, \frac{\partial \kappa}{\partial a_s}$

∃ >

Static Quark Potential.

• This is used to calculate the lattice spacing a_s.

• This is done by measuring the potential between a quark anti-quark pair. Then fit the static quark potential to the Cornell potential.

$$V(r) = C + \frac{\alpha}{r} + \sigma r$$

• Currently looking at W₀ approach as an alternative.

• • = • • = • =

Static Quark Potential.

- This is used to calculate the lattice spacing a_s .
- This is done by measuring the potential between a quark anti-quark pair. Then fit the static quark potential to the Cornell potential.

$$V(r) = C + \frac{\alpha}{r} + \sigma r$$

• Currently looking at W₀ approach as an alternative.

→ ▲ 프 → ▲ 프 → _ 프|

Static Quark Potential.

- This is used to calculate the lattice spacing a_s .
- This is done by measuring the potential between a quark anti-quark pair. Then fit the static quark potential to the Cornell potential.

$$V(r) = C + \frac{\alpha}{r} + \sigma r$$

• Currently looking at W_0 approach as an alternative.

Project
Process
Results
Summary

Results.

Cotter, Giudice, Hands, Skullerud Karsch Coefficients Determination

315

Static Quark Potentia The Sideways Potential Meson Dispersion

Sideways Potential.

• This is used to calculate the gauge anisotropy ξ_g .

• Compare wilson loop ratios.

$$R_{ss}(x,y) \equiv \frac{W_{ss}(x,y)}{W_{ss}(x+1,y)}, \ R_{st}(x,t) \equiv \frac{W_{st}(x,t)}{W_{st}(x+1,t)}$$

• The gauge anisotropy is then

$$\xi_{g} = \frac{V_{xt}(R_{2}) - V_{xt}(R_{1})}{V_{xy}(R_{2}) - V_{xy}(R_{1})}$$

• Currently only considers four sided objects (squares, rectangles).

(4月) (王) (王) (王)

Static Quark Potential The Sideways Potential Meson Dispersion

Sideways Potential.

• This is used to calculate the gauge anisotropy ξ_g .

• Compare wilson loop ratios.

$$R_{ss}(x,y) \equiv \frac{W_{ss}(x,y)}{W_{ss}(x+1,y)}, \ R_{st}(x,t) \equiv \frac{W_{st}(x,t)}{W_{st}(x+1,t)}$$

• The gauge anisotropy is then

$$\xi_{g} = \frac{V_{xt}(R_{2}) - V_{xt}(R_{1})}{V_{xy}(R_{2}) - V_{xy}(R_{1})}$$

• Currently only considers four sided objects (squares, rectangles).

・同 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Static Quark Potential The Sideways Potential Meson Dispersion

Sideways Potential.

- This is used to calculate the gauge anisotropy ξ_g .
- Compare wilson loop ratios.

$$R_{ss}(x,y) \equiv \frac{W_{ss}(x,y)}{W_{ss}(x+1,y)}, \ R_{st}(x,t) \equiv \frac{W_{st}(x,t)}{W_{st}(x+1,t)}$$

The gauge anisotropy is then

$$\xi_{g} = \frac{V_{xt}(R_{2}) - V_{xt}(R_{1})}{V_{xy}(R_{2}) - V_{xy}(R_{1})}$$

• Currently only considers four sided objects (squares, rectangles).

• • = • • = • =

Project	Static Quark Potential
Process	The Sideways Potential
Results	Meson Dispersion
ummary	Meson Dispersion

Results.

Cotter, Giudice, Hands, Skullerud Karsch Coefficients Determination

Project
Process
Results
Summary

Meson Dispersion.

- This gives the mass term M and the fermion anisotropy ξ_q .
- Measure the mass ratio of the pion and rho mesons.
- Give them momenta by using FFT and measure the dispersion relation.

$$a_{\tau}^{2}E^{2} = a_{\tau}^{2}m_{\pi}^{2} + \frac{a_{s}^{2}p^{2}}{\xi_{q}^{2}}$$

(令曰) (令曰) (令曰) (令曰)

Project
Process
Results
Summary

Meson Dispersion.

- This gives the mass term M and the fermion anisotropy ξ_q .
- Measure the mass ratio of the pion and rho mesons.
- Give them momenta by using FFT and measure the dispersion relation.

$$a_{\tau}^{2}E^{2} = a_{\tau}^{2}m_{\pi}^{2} + rac{a_{s}^{2}p^{2}}{\xi_{q}^{2}}$$

A E A A E A E E

Project
Process
Results
Summary

Meson Dispersion.

- This gives the mass term M and the fermion anisotropy ξ_q .
- Measure the mass ratio of the pion and rho mesons.
- Give them momenta by using FFT and measure the dispersion relation.

$$a_{\tau}^{2}E^{2}=a_{\tau}^{2}m_{\pi}^{2}+rac{a_{s}^{2}p^{2}}{\xi_{q}^{2}}$$

Project	
Process	
Results	
Summarv	

Mass Results.

고 노

Project
Process
Results
Summarv

Dispersion Results.

Project
Process
Results
Summary

Four dimensional fit Trace Anomaly Energy Density

The Fit.

Cotter, Giudice, Hands, Skullerud Karsch Coefficients Determination

▲ロト ▲聞ト ▲目ト ▲目ト 三目市 めんの

Project
Process
Results
Summary

Four dimensional fit Trace Anomaly Energy Density

The Fit.

▲母▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わえゆ

Project
Process
Results
Suma ma away

Four dimensional fit Trace Anomaly Energy Density

Beta Function

$$\begin{array}{ccc} c_i & a \frac{\partial c_i}{\partial a} & M \frac{\partial c_i}{\partial M} \\ \beta & -1.02^{+17}_{-29} & 0.73^{+26}_{-13} \\ \kappa & 0.057^{+15}_{-9} & -0.047^{+8}_{-16} \\ \text{using isotropic data} \end{array}$$

$$\begin{array}{ccc} c_i & a \frac{\partial c_i}{\partial a} & M \frac{\partial c_i}{\partial M} \\ \beta & -1.4^{+2.3}_{-0.5} & 3.7^{+1.9}_{-7.0} \\ \kappa & 0.075^{+24}_{-15} & -0.22^{+35}_{-8} \\ \text{using anisotropic data} \end{array}$$

< ロ > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cotter, Giudice, Hands, Skullerud Karsch Coefficients Determination

Project Process	Four dimension
Results	Fnergy Density
Summary	Energy Density

Trace Anomaly

Cotter, Giudice, Hands, Skullerud Karsch Coefficients Determination

Four dimensional fit Trace Anomaly Energy Density

Combined Energy Density I.

三日 のへの

< ∃ >

∃ >

Four dimensional fit Trace Anomaly Energy Density

Combined Energy Density II.

Cotter, Giudice, Hands, Skullerud Karsch Coefficients Determination

-

- Vary parameters to allow for measurement of observables central set.
- Calculate observables, (combination of meson dispersion, static potential, sideways potential and wilson flow).
- Perform four dimensional fit and invert.
- What's next?
 - Incorporate wilson flow code in Karsch Coeffiecent code suite.
 - Look at writing a more efficient static potential code.
 - Look at updating the sideways potential code.
 - Look at improving the meson dispersion code.

- Vary parameters to allow for measurement of observables central set.
- Calculate observables, (combination of meson dispersion, static potential, sideways potential and wilson flow).
- Perform four dimensional fit and invert.
- What's next?
 - Incorporate wilson flow code in Karsch Coeffiecent code suite.
 - Look at writing a more efficient static potential code.
 - Look at updating the sideways potential code.
 - Look at improving the meson dispersion code.

- Vary parameters to allow for measurement of observables central set.
- Calculate observables, (combination of meson dispersion, static potential, sideways potential and wilson flow).
- Perform four dimensional fit and invert.
- What's next?
 - Incorporate wilson flow code in Karsch Coeffiecent code suite.
 - Look at writing a more efficient static potential code.
 - Look at updating the sideways potential code.
 - Look at improving the meson dispersion code.

- Vary parameters to allow for measurement of observables central set.
- Calculate observables, (combination of meson dispersion, static potential, sideways potential and wilson flow).
- Perform four dimensional fit and invert.
- What's next?
 - Incorporate wilson flow code in Karsch Coeffiecent code suite.
 - Look at writing a more efficient static potential code.
 - Look at updating the sideways potential code.
 - Look at improving the meson dispersion code.

For Further Reading

Further Reading

- S. Hands, S. Kim and J. Skullerud. A Quarkyonic Phase in Dense Two Color Matter? Phys. Rev. D81, 091502 (2010), [1001.1682]
- T. R. Klassen. *The Anisotropic Wilson Gauge Action*. Nucl. Phys B533, 557 (1998), [hep-lat/9803010]
- L. Levkova, T. Manke and R. Mawhinney. Two-flavor QCD Thermodynamics using Anisotropic Lattices. Phys. Rev. D73, 074504 (2006), [hep-lat/0603031]
- S. Cotter, P. Giudice, S. Hands, J. Skullerud. Towards the phase diagram of dense two-colour matter. Phys. Rev. D87, 034507, (2013), [arXiv:1210.4496].

