SO(2N) and SU(N) gauge theories Lattice 2013

Richard Lau and Michael Teper

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

2 August 2013

<i>SO</i> (2 <i>N</i>) Gauge Theories	String Tensions 000	Mass Spectrum 000000	Deconfining Temperature	Conclusions 0

Talk Structure

1 SO(2N) Gauge Theories

- **2** String Tensions
- **3** Mass Spectrum
- **4** Deconfining Temperature

5 Conclusions

SO(2N) Gauge Theories: Why SO(2N)?

• Group equivalence

 $SU(2)\sim SO(3)$ $SU(4)\sim SO(6)$

• Large-N equivalence¹²

$$SU(N \to \infty) = SO(2N \to \infty)$$

 $g^2|_{SU(N \to \infty)} = g^2|_{SO(2N \to \infty)}$

• No sign problem

¹C. Lovelace, Nucl. Phys. B201 (1982) 333

²A. Cherman, M. Hanada, and D. Robles-Llana, Phys. Rev. Lett. 106, 091603 (2011)

SO(2N) and SU(N) gauge theories

SO(2N) Gauge TheoriesString TensionsMass SpectrumDeconfining TemperatureConclusions○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Going between SU(N) to SO(2N)

Our approach

- Continuum limit at specific SO(2N)
- Large-N extrapolation

SO(2N) Gauge Theories: Lattice Setup

- D = 3 + 1
 - Bulk transition occurs at very small lattice spacing
 - Very large lattices required to get continuum extrapolation.³
- D = 2 + 1
 - Bulk transition occurs at larger lattice spacing
- Pure gauge theories

$$S = \beta \sum_{p} \left(1 - \frac{1}{N} \operatorname{Tr} U_{p} \right) : \beta = \frac{2N}{ag^{2}}$$

³e.g. P. de Forcrand and O. Jahn, Nucl. Phys. B651 (2003) 125

SO(2N) and SU(N) gauge theories

Richard Lau and Michael Teper

String Tensions: Extracting string tensions

- Polyakov loop operators $I_P(t)$
- Correlators

$$C(t)\equiv \langle I_P(t)I_P(0)
angle \propto e^{-m_P t}$$

• Nambu-Goto model⁴

$$m_P(l) = \sigma l \left(1 - \frac{\pi}{3\sigma l^2}\right)^{\frac{1}{2}}$$

⁴A. Athenodorou, B. Bringoltz, and MT, JHEP 1102 (2011) 030

.

String Tensions: $SO(2N ightarrow \infty)$ and $SU(N ightarrow \infty)$

Large-N extrapolation of SO(2N) and $SU(N)^5$ string tensions

Gauge group	$\left. \frac{\sqrt{\sigma}}{g^2 \tilde{N}} \right _{\tilde{N} \to \infty}$
SO(2N)	0.1981(6)
SU(N)	0.1974(2)

⁵B. Bringoltz and MT, Phys. Lett. B645: 383-388 (2007)

SO(2N) and SU(N) gauge theories

Richard Lau and Michael Teper

 SO(2N) Gauge Theories
 String Tensions
 Mass Spectrum
 Deconfining Temperature
 Conclusions

 000
 000
 000000
 000000
 0

Mass Spectrum: Extracting glueball masses

• Operators for J^P glueballs

$$\phi(t) = \sum_{\vec{x}} \sum_{n} e^{ij\theta_n} \operatorname{Tr} \left\{ U_{R(\theta_n)\mathcal{C}} \pm U_{PR(\theta_n)\mathcal{C}} \right\} : \theta_n = \frac{n\pi}{2}$$

- Variational method⁶
- Correlation functions

$$C(t)\equiv rac{\langle \phi(t)\phi(0)
angle}{\langle \phi(0)\phi(0)
angle}\propto e^{-m_G t}$$

⁶MT, Phys. Rev. D59 (1999) 014512

SO(2N) Gauge TheoriesString TensionsMass Spectrum
0Deconfining TemperatureConclusions
000000000000

Mass Spectrum: Continuum extrapolation

SO(6): 0^{+/-} glueball masses

SO(2N) Gauge Theories String Tensions Mass Spectrum Deconfining Temperature

Mass Spectrum: $SO(2N \rightarrow \infty)$

Large-N extrapolation: $0^{+/-}$ glueball masses N = 6, 8, 12, 16

SO(2N) Gauge TheoriesString TensionsMass SpectrumDeconfining TemperatureConclusions0000000000000000000

Mass Spectrum: $SO(2N \rightarrow \infty)$ Large-N extrapolation: $1^{+/-}$, $2^{+/-}$ glueball masses N = 6, 8, 12, 16

SO(2N) Gauge Theories

String Tensions

Mass Spectrum

Deconfining Temperature

Conclusions 0

Mass Spectrum: $SO(2N \rightarrow \infty)$ and $SU(N \rightarrow \infty)$ Large-N extrapolation of 0⁺ glueball mass for SO(2N) and $SU(N)^7$.

SO(2N) and SU(N) gauge theories

Richard Lau and Michael Teper

SO(2N) Gauge Theories

String Tensions

Mass Spectrum

Deconfining Temperature

Mass Spectrum: $SO(2N \rightarrow \infty)$ and $SU(N \rightarrow \infty)$

Large-N extrapolation of SO(2N) and $SU(N)^8$ mass spectra

J^P	$SO(2N ightarrow\infty)$	$SU(N o \infty)$
0+	4.14(3)	4.11(2)
0+*	6.51(4)	6.21(5)
2+	6.95(9)	6.88(6)
2-	7.03(8)	6.89(21)
0 ^{+**}	8.31(20)	8.35(20)
0-	9.44(22)	9.02(30)
2+*	8.74(12)	9.22(32)
1^+	9.65(41)	9.98(25)
1^{-}	9.56(48)	10.06(40)

⁸B. Lucini and MT, Phys. Rev. D 66, 097502 (2002)

 SO(2N) Gauge Theories
 String Tensions
 Mass Spectrum
 Deconfining Temperature
 Conclusions

 000
 000000
 000000
 000000
 0

Deconfining Temperature: Finding the deconfining phase transition

• Finite temperature theory

$$T = \frac{1}{a(\beta)L_t}$$

• Deconfining temperature

$$T_c = \frac{1}{a(\beta_c)L_t}$$

• Order parameters O

$$\overline{U_t}$$
, $|\overline{I_p}|$

 SO(2N) Gauge Theories
 String Tensions
 Mass Spectrum
 Deconfining Temperature
 Conclusions

 000
 000
 000000
 0
 0
 0

Deconfining Temperature: Deconfining phase transition Histograms of $\langle \overline{I_p} \rangle$ in SO(16) on a 8²3 lattice

Deconfining Temperature: Reweighting

• Order parameters O

$$\overline{U_t}$$
, $|\overline{I_p}|$

• Susceptibility χ_o

$$\chi_o \sim \langle O^2 \rangle - \langle O \rangle^2$$

• Reweighting⁹

$$Z(\beta) \equiv \sum_i D(S_i) e^{-\beta S_i}$$

⁹A. Ferrenberg and R. Swendsen, Phys. Rev. Lett. 63, 11951198 (1989)

 $|\overline{I_p}|$ susceptibility $\Rightarrow \beta_c = 149.32(1)$

 SO(2N) Gauge Theories
 String Tensions
 Mass Spectrum
 Deconfining Temperature
 Conclusions

 000
 000
 000000
 000000
 0
 0

Deconfining Temperature: Finite volume extrapolation $SO(16): \beta_c(V \to \infty)$ at $T_c = \frac{1}{3a}$, $L_s = 8$, 10, 12, 14

 $\overline{u_t}$ susceptibility $\Rightarrow \beta_c(V \to \infty) = 150.21(3)$ $|\overline{l_p}|$ susceptibility $\Rightarrow \beta_c(V \to \infty) = 150.16(2)$

Deconfining Temperature: $SO(2N \rightarrow \infty)$ and $SU(N \rightarrow \infty)$

Large-N extrapolation of $SO(2N)^{10}$ and $SU(N)^{11}$ deconfining temperatures

Gauge group	$T_c/\sqrt{\sigma}$
$SO(2N o \infty)$	0.924(20)
$SU(N o \infty)$	0.903(23)

¹⁰F. Bursa, RL, and MT, JHEP 1305:025,2013
 ¹¹J. Liddle and MT, arXiv:0803.2128

SO(2N) and SU(N) gauge theories

Conclusions

- There are large-N equivalences between *SO*(2*N*) and *SU*(*N*) gauge theories.
- Their pure gauge theories in 2+1 dimensions have matching physical properties at large-N.
 - String tensions
 - Mass spectra
 - Deconfining temperature
- SO(2N) theories may provide a starting point for answering problems with SU(N) QCD theories at finite chemical potential.