Looking for a Quarkonium-Nucleus Bound State on the Lattice

Saul D. Cohen (for NPLQCD Collaboration)

W UNIVERSITY of WASHINGTON

Lattice 2013 2013 August 02

S. D. Cohen (U Washington)

Nucleus-Onium Bound States

2013 Aug 02 1 / 20

Unique Probe of QCD Effects

- Heavy quarkonia share no valence quarks with nuclei
- Normally dominant quark exchange suppressed to second order
- Dominated by two-gluon exchange (color van der Waals)
- Color Stark effect: Chromoelectric field induces dipoles in neutral hadrons that interact

★ ∃ →

Unique Probe of QCD Effects

- Heavy quarkonia share no valence quarks with nuclei
- Normally dominant quark exchange suppressed to second order
- Dominated by two-gluon exchange (color van der Waals)
- Color Stark effect: Chromoelectric field induces dipoles in neutral hadrons that interact

Unique Probe of QCD Effects

- Heavy quarkonia share no valence quarks with nuclei
- Normally dominant quark exchange suppressed to second order
- Dominated by two-gluon exchange (color van der Waals)
- Color Stark effect: Chromoelectric field induces dipoles in neutral hadrons that interact

Model History

- Brodsky et al. [PRL64,1011 (1990)] noted features of *pp* scattering near open-charm threshold
- No Pauli blocking; no quark-exchange $\eta_c h$: 19 MeV, η_c^{9} Be: 407 MeV(!)
- Wasson [PRL67,2237 (1991)] points out the nucleus is not pointlike
- Charm binding saturates for large A $\eta_c h$: 0.8 MeV, η_c^{208} Pb: 27 MeV

(日) (同) (三) (三)

Model History

- Brodsky et al. [PRL64,1011 (1990)] noted features of *pp* scattering near open-charm threshold
- No Pauli blocking; no quark-exchange η_ch: 19 MeV, η_c⁹Be: 407 MeV(!)
- Wasson [PRL67,2237 (1991)] points out the nucleus is not pointlike
- Charm binding saturates for large A $\eta_c h$: 0.8 MeV, η_c^{208} Pb: 27 MeV

Z,A

(日) (同) (三) (三)

Model History

- Brodsky et al. [PRL64,1011 (1990)] noted features of *pp* scattering near open-charm threshold
- No Pauli blocking; no quark-exchange η_ch: 19 MeV, η_c⁹Be: 407 MeV(!)
- Wasson [PRL67,2237 (1991)] points out the nucleus is not pointlike
- Charm binding saturates for large A $\eta_c h$: 0.8 MeV, η_c^{208} Pb: 27 MeV

- 4 @ ▶ 4 @ ▶ 4 @ ▶

Model History II

- Luke, Manohar, Savage [PLB288,355 (1992)] use heavy-quark expansion and look at leading Stark effect using OPE
- At saturation: ΥA : 4 MeV, $J/\psi A$: 11 MeV
- Induced dipole depends on radius of quarkonium like r³; excited ψ' has huge radius
- Excited state becomes ground state in nuclear matter!

 $\psi'(2s)A$: 700 MeV(!!)

→ ∃ →

Model History II

- Luke, Manohar, Savage [PLB288,355 (1992)] use heavy-quark expansion and look at leading Stark effect using OPE
- At saturation: ΥA : 4 MeV, $J/\psi A$: 11 MeV
- Induced dipole depends on radius of quarkonium like r³; excited ψ' has huge radius
- Excited state becomes ground state in nuclear matter!

 $\psi'(2s)A$: 700 MeV(!!)

Model History III

Many additional model calculations; small selection shown.

- Shevchenko [PLB392,457 (1997)] uses vacuum-correlator method No binding(?) except for very large nuclei
- de Teramond, Espinoza, Ortega-Rodriguez [PRD58,034012 (1998)] Tune their potential to *pp* spin correlations; No binding in light nuclei η_c ⁶Li: 0.1 MeV, η_c ²⁰⁸Pb: 9 MeV
- Lee and Ko [PRC67,038202 (2000)] look again at ψ' at saturation J/ψ A: 5 MeV, $\psi'(3686)$ A: 130 MeV
- Thomas [PRC83,065208 (2011)] uses quark-meson coupling model $J/\psi \alpha$: 5 MeV, J/ψ^{208} Pb: 18 MeV

Experimental Prospects

Long history of proposals to measure charmonium-nucleus binding

- ATHENNA 12-GeV upgrade at CEBAF (JLab) (*ep* scattering)
- PANDA at FAIR (GSI) ($\bar{p}p$ scattering)
- Also attempts to measure nucleus-bound ϕ , ω , η' or η
- ηh: 4(4) MeV(??) at MAMI [PRL92,252001 (2004)] not confirmed by COSY; some theoretical problems
- COSY-GEM [PRC79,012201 (2009)] found ²⁵/_ηMg: 12(2) MeV
- Models of other mesic nuclei
 - [PRC34,1845 (1986)]: A < 12 unbound, ηA: 17 MeV
 - Thomas predicts ηA : 90 MeV at saturation
 - [Prog.Th.Phys.124,147 (2010)]: ϕA : 4–40 MeV at saturation

(日) (周) (三) (三)

NPLQCD Collaboration

Silas Beane

Emmanuel Chang New Hampshire Barcelona

William Detmold Willam+Mary

Huev-Wen Lin U. of Washington

Tom Luu LENE

Saul Cohen U. of Washington

Jefferson Lab

... to make predictions for the structure and interactions of nuclei using lattice QCD.

US Lattice Quantum Chromodynamics

Nucleus-Onium Bound States

2013 Aug 02 7 / 20

Kostas Orginos William+Marv

Assumpta Parreno Barcelona

Marton Savage U. of Washington

Aaron Torok Indiana

Andre Walker-Loud I BNI

NPLQCD Collaboration

Silas Beane

New Hampshire

Emmanuel Chang Barcelona

Chang William Ia Willai

William Detmold Willam+Mary

Huse Wen an U. of Washington

Tom Luu LLNL

Saul Cohen U. of Washington

Kostas Orginos William+Mary

Assumpta Parreno Barcelona Marton Savage U, of Washington

Aaron Torok Andre Walker-Loud Indiana LBNL +

Jefferson Lab

... to make predictions for the structure and interactions of nuclei using lattice QCD.

US Lattice Quantum Chromodynamics

Nucleus-Onium Bound States

2013 Aug 02 7 / 20

The Trouble with Nucleons

Nucleons are more complicated than mesons because...

Noise

Signal diminishes at large t relative to noise

Excited-state contamination

Nearby excited state Roper N(1440)

• Hard to extrapolate in pion mass

 Δ resonance nearby; multiple expansions, poor convergence

- Requires large volume and high statistics Ensembles are not always generated with nuclear physics in mind
- Quark contractions

Naively scale like $N_u!N_d!N_s!$ Blocking and recursion: [PRD87,114512 (2013)]

Signal-to-Noise Ratio

Why is noise such a problem for nucleons?

Recall that variance is $\sigma_O^2 = \langle O^2 \rangle - \langle O \rangle^2$. For a nucleon correlator, our operator is $O \propto qqq(t) \bar{q}\bar{q}\bar{q}(0)$

Nuclear LQCD

The Golden Window Things don't always have to go wrong

Although the exponential behavior is known, the coefficients are not. Suppose there is suppression of the overlap of the $\langle N^{\dagger}N\rangle$ onto the 3π state.

SU(3)-Symmetric QCD

- Work at the SU(3) symmetric point: $M_\pi pprox$ 800 MeV
- NPLQCD Calculation [PRD87,034506 (2012)]
 - Isotropic 2+1-flavor 800-MeV O(a)-improved Wilson-clover fermions
 - $a_s = 0.145 \text{ fm}$
 - 3 volumes: 3.4 fm, 4.5 fm and 6.7 fm
 - Very high statistics:

 72×3822 (3.4 fm), 48×3050 (4.5 fm), 54×1905 (6.7 fm)

くほと くほと くほと

Nuclear LQCD

SU(3)-Symmetric QCD

S. D. Cohen (U Washington)

Nucleus-Onium Bound States

2013 Aug 02 12 / 20

SU(3)-Symmetric QCD

- *H*-dibaryon deeply bound: *B_H* = 74.6(3.3)(3.3)(0.8) MeV
- Deuteron clearly bound: $B_d = 19.5(3.1)(0.2) \text{ MeV}$ more bound than quenched
- Small *d-nn* splitting other splittings larger
- α also more bound than Of $B_{\alpha} = 107(12)(21)(1)$ MeV

Gluonic-Interaction Data

How can we leverage this dataset?

- Many correlators for nuclei, hypernuclei, strange and light mesons
- Ideal for gluonic interactions
- First, apply method to strange quarkonia: η_{s} , ϕ
- No free quark lines \implies no quark exchange
- No spin degrees of freedom \Longrightarrow limited to η or α

SU(3)-Symmetric QCD

- Work at the SU(3) symmetric point: $M_\pi pprox$ 800 MeV
- NPLQCD Calculation [PRD87,034506 (2012)]
 - Isotropic 2+1-flavor 800-MeV O(a)-improved Wilson-clover fermions
 - $a_s = 0.145 \text{ fm}$
 - 3 volumes: 3.4 fm, 4.5 fm and 6.7 fm
 - Very high statistics:

 72×3822 (3.4 fm), 48×3050 (4.5 fm), 54×1905 (6.7 fm)

- Several sources and smearings available for each correlator
- Extract binding energies using three methods:
 - One-state fit to ratio of correlators (gray bar) time-extent of bar **does not indicate fit range**
 - Splitting between energies extracted from one-state fits (red)
 - Splitting between energies extracted from two-state fits (green)

イロト 不得下 イヨト イヨト 二日

η_s -N Binding Effective Mass

η_s -A Binding Effective Masses

η_s -Nucleus Binding vs A

$\phi\text{-}\alpha$ Binding Effective Mass

ϕ - α Binding

э

Conclusions

Summary

- Now possible to explore gluonic nuclear interactions up to A = 4
- η_s has an attractive interaction for all $A \leq 4$
- Energy shift linear in A with slope $B_{\eta_s A} = 22.6(5) \text{ MeV}/A$
- ϕ - α has a clear bound state with $B_{\phi\alpha} = 139(12)$ MeV

Future Directions

- Study coupled channels (e.g. $N\phi$ - ΛK^*)
- Examine boosted systems and multiple volumes to clarify bound-state identification versus attractive scattering
- Charmonium bindings (in progress)
- Excited states?