Heavy Meson Semileptonic Form Factors: For the Standard Model and Beyond

Yuzhi Liu 刘玉志 (University of Iowa) and Ran Zhou 周然 (Indiana University) Fermilab Lattice and MILC Collaborations

presented by Andreas S. Kronfeld **\$ Fermilab**

XXX1st International Symposium on Lattice Field Theory 2 August 2013 in Mainz

Physics Motivation

• The FCNC process $B \rightarrow Kl^+l^-$ proceeds via penguin diagrams in the Standard Model:

- probe of physics beyond the SM (BSM), studied in experiments.
- The charged current $B_s \rightarrow K^-l^+\nu$ proceeds proportional to V_{ub}^* :
 - combining with future measurements at LHCb or Belle II (5S) would lead to a new determination of $|V_{ub}|$.

Matrix Elements and Form Factors

• Decompose amplitudes in form factors:

$$\langle K(k)|\bar{s}\gamma^{\mu}c|B_{(s)}(p)\rangle = \left(p^{\mu}+k^{\mu}-\frac{M_{B_{(s)}}^2-N}{q^2}\right)$$

$$\langle K(k)|\bar{s}\sigma^{\mu\nu}c|B_{(s)}(p)\rangle = -2i\frac{p^{\mu}k^{\nu}-p^{\nu}k^{\mu}}{M_{B_{(s)}}+M_{K}}f_{T}(q)$$

$$\langle K(k)|\bar{s}c|B_{(s)}(p)\rangle = \frac{M_{B_{(s)}}^2 - M_K^2}{m_c - m_s} f_0(q^2),$$

• For a heavy *b* quark:

$$f_T(q^2) = \frac{M_{B_{(s)}} + M_K}{\sqrt{2M_{B_{(s)}}}} f_\perp(E_K), \quad q^2 = M_{B_{(s)}}^2 + M_K^2 - 2M_{B_{(s)}}E_K$$

• In lattice QCD, and for heavy-meson chiral perturbation theory, it is convenient to write

$$\langle K(k)|\bar{s}\gamma^{\mu}c|B_{(s)}(p)\rangle = \sqrt{2M_{B_{(s)}}}\left(\frac{p^{\mu}}{M_{B_{(s)}}}f_{\parallel}(E_{K})+k_{\perp}^{\mu}f_{\perp}(E_{K})\right),$$

$$f_{+}(q^{2}) = \frac{1}{\sqrt{2M_{B_{(s)}}}} \left[(M_{B_{(s)}} - B_{(s)}) \right]$$

$$f_0(q^2) = \frac{\sqrt{2M_{B_{(s)}}}}{M_{B_{(s)}}^2 - M_K^2} \left[(M_{B_{(s)}} - E_K) f_{\parallel}(E_K) + (E_K^2 - M_K^2) f_{\perp}(E_K) \right],$$

• Then construct three-point correlation functions to extract:

$$f_{\parallel}(E_{K}) = \frac{\langle K(k) | \bar{s} \gamma^{4} c | B_{(s)}(0) \rangle}{\sqrt{2M_{B_{(s)}}}}, \quad f_{\perp}(E_{K}) = \frac{\langle K(k) | \bar{s} \gamma^{i} c | B_{(s)}(0) \rangle}{k^{i} \sqrt{2M_{B_{(s)}}}}, \quad f_{T}(E_{K}) = \frac{M_{B_{(s)}} + M_{K}}{\sqrt{2M_{B_{(s)}}}} \frac{\langle K(k) | \bar{s} i \sigma^{4i} c | B_{(s)}(0) \rangle}{k^{i} \sqrt{2M_{B_{(s)}}}},$$

 $E_K)f_{\perp}(E_K)+f_{\parallel}(E_K)\Big],$

Common Ingredients

- MILC asquad ensembles (2+1 sea quarks simulated with rooted staggered determinant):
 - lattice spacing $a \approx 0.12, 0.09, 0.06$ fm; m_s near physical; $m_l/m_s = 0.05, 0.1, 0.14, 0.2, 0.4$.
- Valence quarks: asqtad for s, d, u; Fermilab method for b action and heavy-light current.
- Chiral-continuum extrapolation for $E_K r_1 < 1.8$ ($E_K < 1.2$ GeV) with rooted staggered HM χ PT.
- Model-independent z expansion to extend results to whole kinematic range.
- Mostly nonperturbative matching, $\rho_{J_{bs}} = Z_{J_{bs}}(Z_{V_{bb}}^4 Z_{V_{ss}})^{-1/2}$, computed at one loop. Blinded.
- Similar work by <u>HPQCD</u>, using lattice NRQCD for the b quark, and giving <u>phenomenology</u>.

Ensembles

<i>a</i> (fm)	size	am_l/am_s	# confs	# sources		$am_s^{\mathrm{val}}\left(B_s\right)$
≈0.12	20 ³ × 64	0.01/0.05	2259	4		
≈0.12	20 ³ × 64	0.007/0.05	2110	4		
≈0.12	20 ³ × 64	0.005/0.05	2099	4		0.0336
≈ 0.09	28 ³ × 96	0.0124/0.031	1996	4		
≈ 0.09	$28^3 \times 96$	0.0062/0.031	1931	4		0.0247
≈ 0.09	32 ³ × 96	0.0465/0.031	984	4 _{FCNC}	8скм	0.0247
≈ 0.09	40 ³ × 96	0.0031/0.031	1015	4 _{FCNC}	8скм	0.0247
≈ 0.09	64 ³ × 96	0.00155/0.031	791	4		0.0247
≈ 0.06	48 ³ ×144	0.0036/0.018	673	4		
≈ 0.06	64 ³ ×144	0.0018/0.018	827	4		0.0177

got MILC?

Outline

- CKM mode $B_s \rightarrow K^{-}l^+\nu$:
 - ratio of two- and three-point correlators constructed to suppress excited states [arXiv: <u>0811.3640 [hep-lat]</u> vs. direct fit;
 - read off plateau fit to remove excited state contributions.
- FCNC mode $B \rightarrow Kl^+l^-$:
 - correlator fitting presented last year;
 - chiral-continuum extrapolation: SU(3) vs. SU(2); to pole or not to pole;
 - model-independent z expansion: BGL vs. BCL; to pole or not to pole.

[R. Zhou, PoS LATTICE2012 (2012) 120]

CKM Mode $B_s \rightarrow K^{-l+\nu}$

9

Comparison: ratio plateau vs. fit

- Blue points indicate a ratio of two- and three-point correlators that suppress excited states.
- Statistics are good enough that small excited-state contributions are significant.
- Fit three-point correlators with two-point mass, [M² + (2πn/L)²]^{1/2}, and Z(0) as priors, yielding black curve; note agreement with the ratio itself.
- Green band shows the $B_s \rightarrow K$ amplitude without excited states.

Preliminary results for $B_s \rightarrow K$: f_{\parallel}

FCNC Mode $B \rightarrow Kl^+l^-$

R. Zhou, *PoS* LATTICE2012 (2012) 120

Chiral continuum extrapolation

- SU(3) rS χ PT leads to fits with poor χ^2/dof and —worse—unphysical shape for f_{\parallel} .
- SU(2) rS χ PT: $f_{\parallel}(E) = \frac{C^{(0)}}{f_{\pi}} \Big[1 + \log s + C^{(1)} \chi_l^{\text{val}} + C^{(2)} \chi_E$ $f_{\perp,T,\parallel}(E) = \frac{2M_B C^{(0)}}{f_{\pi}(M_{R^*}^2 - M_R^2 - M_K^2 - 2M_B E)} \left[1\right]$

where the χ s denote m_l , E, a^2 normalized by $4\pi f_{\pi}$ and other factors to that the natural χ PT prior draws $C^{(j)}$, j > 0, from $\{0, \pm 1\}$. Pole position is given by the mass of the 1⁻ (0⁺) B_s state.

- The data for f_0 show curvature in E. We model this either with a curvature term or a pole, even though the pole is not well known and (presumably) above threshold.
- We favor the pole fit, as explained on the next slide, with prior $\{5.72,\pm0.50\}$ GeV for $M_{B_s(0^+)}$.

$$E + C^{(3)}\chi_{a^{2}} + C^{(4)}\chi_{E}^{2}$$

+ logs + $C^{(1)}\chi_{l}^{\text{val}} + C^{(2)}\chi_{E} + C^{(3)}\chi_{a^{2}}$

Polology

• Curvature in decay region ($E_{\pi K} > m$) stems from poles in scattering region ($E_{\pi K} < m$).

Chiral Continuum Extrapolation

- Data with $m_q = m_l$ and $a \approx 0.12$ (coarse), $a \approx 0.09$ (fine), and $a \approx 0.06$ (superfine), with chiralcontinuum extrapolation.
- Small but significant a and m_q dependence.

Preliminary Error Budgets – before z expansion

- Errors, esp. those from chiral-continuum extrapolation and discretization, depend on q^2 .
- Over the range with explicit data, the (relative) error remains under 5, 3, 5% (for f_+ , f_0 , f_T) after the chiral-continuum extrapolation:

Preliminary Error Estimate—after z expansion

•
$$z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

- $|z| \le 0.16$.
- Fit using BCL outer function, $\phi = 1$.
- Verify the kinematic constraint from independent fits to $f_+ \& f_0$.
- Final fit for $f_+ \& f_0$ imposes kinematic constraint.
- The relative error grows to 16, 16, 22 % (for f_+, f_0, f_T) at $q^2 = 0$.

 $q^2 (\text{GeV}^2)$

Preliminary Results for Form Factors for All q^2

Normalization still blinded, but shape agrees with competitors' results.

Next Steps

- CKM mode $B_s \rightarrow K^{-}l^+\nu$:
 - carry out chiral-continuum extrapolation and expansion;
 - package expansion z coefficients and correlation matrix for future use (LHCb, Belle2).
- FCNC mode $B \rightarrow Kl^+l^-$:
 - finalize error estimation (finalize favored fits and rank alternatives, etc.);
 - package expansion z coefficients and correlation matrix for phenomenology.
- Publish papers.