On Massive Gauge Theories

Pilar Hernández

Universidad de Valencia and IFIC

In collaboration with Michele Della Morte, to appear

Introduction

The Higgs has been discovered and the EWSB sector of the SM seems accurately described by the simplest Higgs mechanism

Englert, Brout; Higgs; Guralnik, Hagen, Kibble; Weinberg

$$V(\Phi) = -\frac{m_H^2}{2}(\Phi^{\dagger}\Phi) + \frac{\lambda}{4}(\Phi^{\dagger}\Phi)^2$$

$$\langle \Phi \rangle = \begin{pmatrix} 0 \\ \frac{v}{\sqrt{2}} \end{pmatrix} \to m_W = \frac{1}{2}gv, \quad m_f = \lambda_f \frac{v}{\sqrt{2}}$$

Massive and weakly coupled non-abelian gauge theory:

- where the scale v comes from ?
- Couplings to the Higgs create havoc in the SM: the flavour problem...

Introduction

This naive characterisation of SSB is not at work beyond perturbation theory

In any lattice formulation of gauge theories: Elitzur's theorem

 $\langle \Phi \rangle = 0$

Elitzur; Frölich et al

A non-perturbative derivation of the weakly-coupled electroweak sector of the SM might shed some light on the hierarchy and flavour problems...

Massive gauge theories on the lattice

Any theory of gauge fields with non-gauge invariant interactions is equivalent to a gauge theory + scalar degrees of freedom

$$\int [dU] \ e^{-S_{g.i.}[U] - S_{n.g.i}[U]} = \int [d\Omega] \int [dU] \ e^{-S_{g.i.}[U] - S_{n.g.i}[U^{\Omega}]}$$
$$\equiv \int [d\Omega] \int [dU] e^{-\tilde{S}[U,\Omega]}$$

$$\tilde{S}[U,\Omega] = \tilde{S}[U^{\Lambda},\Lambda\Omega]$$

In particular Gauge theory with a mass term = Gauged non-linear σ model

$$S_m[U] = \beta \sum_x \sum_{\mu,\nu} \operatorname{Retr} \left[1 - P(x,\mu,\nu)\right] - \frac{\kappa}{2} \sum_x \sum_\mu \operatorname{tr} \left[U_\mu + U_\mu^\dagger\right],$$

$$\tilde{S}[U,\Omega] \equiv \beta \sum_{x} \sum_{\mu,\nu} \operatorname{Retr}\left[1 - P(x,\mu,\nu)\right] - \frac{\kappa}{2} \sum_{x} \sum_{\mu} \operatorname{tr}\left[\Omega^{\dagger}(x)U_{\mu}(x)\Omega(x+a\hat{\mu}) + h.c.\right]$$

For SU(2): SU(2)+Higgs in the limit $\lambda \to \infty$

Phase Diagram

Lang, Rebbi, Virasoro; Osterwalder, Seiler; Fradkin, Shenker; Forster, Nielsen, Ninomiya

- $\kappa = 0$: pure gauge theory, critical point at $\beta_c = \infty$ $\beta = \infty$: σ -model, critical point at κ_c
- $\kappa < \kappa_{\min}$: pure gauge theory universality class (continuum limit at $\beta \to \infty$)
- confinement/Higgs phases: analytically connected in red region

Phase Diagram

Langguth, Montvay, Weisz; Campos; Caudy, Greensite

Recent studies: line of first order phase transition end-point at $\beta_c \simeq 2.7$ Bonati, Cossu, D'Elia, Di Giacomo 2010

Is there a continuum or a scaling region within the Higgs phase ? $\xi_{\Omega}/a \to \infty$?

If so what Wilsonian effective theory describes it ? What are the light dogs ? Is it renormalizable ?

Strategy in this work: search for lines of constant physics and test scaling

Lattice perturbation Theory

A perturbative expansion is possible as a low-energy expansion $p^2 \ll \frac{\kappa}{a^2} = \frac{2m_W^2}{g_0^2}$ (natural cutoff $\sim 4\pi \frac{\sqrt{\kappa}}{a}$)

Appelquist, Bernard

In the regime $m_W^2 \ll p^2 \ll rac{2m_W^2}{g_0^2}$ with background field method $(B^a_\mu, \, \omega^a)$:

Lüscher, Weisz

Up to corrections of $\mathcal{O}(m_W^2/p^2,p^2/\kappa)$ (preliminary):

$$\begin{split} \left(\frac{\Delta g^2}{g^4}\right) &= \frac{N}{(4\pi)^2} \left(-\frac{29}{8}\ln p^2 + \frac{63}{9}\right) + N\left(\frac{7}{48}P_1 + \frac{29}{8}P_2 + \frac{1}{16}\right) - \frac{1}{8N} \\ \frac{\Delta \kappa}{\kappa} &= \frac{1}{\kappa} \left[\frac{1}{8N} - \frac{N}{16} - \frac{N}{2}P_1\right] \\ &- g^2 \left[\left(\frac{5N}{32} - \frac{3}{16N}\right)P_1 + \frac{3N}{4}P_2 - \frac{N}{4}\frac{1}{(4\pi)^2} - \frac{3N}{4(4\pi)^2}\log(m_W^2) \right] \\ &+ \frac{2N}{(4\pi)^2}F\left(\frac{m_W^2}{p^2}\right)\right], \end{split}$$

$$P_{1} \equiv \int_{-\pi}^{\pi} \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{\hat{p}^{2}} = 0.15493339...$$

$$P_{2} \equiv \lim_{\mu \to 0} \left\{ \frac{1}{(4\pi)^{2}} \log(\mu^{2}) + \int_{-\pi}^{\pi} \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{(\hat{p}^{2} + \mu^{2})^{2}} \right\} = 0.02401318....$$

$$F(x) \equiv 1 - \sqrt{1 + 4x} \operatorname{arccoth} \sqrt{1 + 4x}$$

Ungauged result g = 0: Shushpanov, Smilga

7

There is asymptotic freedom

$$\beta(g) = -\frac{29N}{8(4\pi)^2}g^3 + \dots,$$

Fabbrichesi et al

but with a different coefficient as in the pure gauge theory.

A continuum limit ? At this order requires:

 $\kappa + \Delta \kappa = 0$

and a tunning order by order...

Wilsonian Effective Theory

Let us assume that a scaling region exists where $m_{\rm phys}a \rightarrow 0$ with the following properties:

- Asymptotic states are gauge singlets: confinement
- The lightest state has the quantum numbers of the W^a_μ boson and is weakly coupled

Eg: interpolating field

$$V^a_{\mu} \equiv i \frac{\kappa}{2} \operatorname{Tr}[\Omega(x)^{\dagger} U_{\mu}(x) \Omega(x + \hat{\mu}) T^a] + h.c.$$

Then the Wilsonian effective theory is itself a massive gauge theory up to effects of higher excited states

Exact global symmetry: Custodial Symmetry

The lattice action preserves an exact SU(2) global symmetry:

$$\Omega(x) \quad \to \quad \Omega(x)\Lambda, \ \Lambda \in SU(N)$$

The corresponding conserved Noether currents are:

$$V^a_{\mu} \equiv i\frac{\kappa}{2} \operatorname{Tr}[\Omega(x)^{\dagger} U_{\mu}(x)\Omega(x+\hat{\mu})T^a] + h.c.$$

$$\hat{\partial}_{\mu}V^{a}_{\mu} = 0,$$

where $\hat{\partial}_{\mu}\Omega(x)\equiv\Omega(x+\hat{\mu})-\Omega(x)$

The effective theory must preserve the global symmetry:

$$\mathcal{L}_{eff}(W) = -\frac{1}{4} Z_W \,\partial_{[\mu, W_{\nu]}} \cdot \partial_{[\mu, W_{\nu]}} - \alpha \,W_\mu \times W_\nu \cdot \partial_\mu W_\nu - Z_W m_W^2 \,W_\mu \cdot W_\mu + \lambda (W_\mu \cdot W_\mu)^2 + \mu (W_\mu \cdot W_\nu)^2,$$

Imposing that W is the conserved current of the global symmetry in the effective theory:

$$\frac{\partial \mathcal{L}_{eff}}{\partial \partial_{\mu} \epsilon^{a}(x)} \propto W^{a}_{\mu}(x),$$

then

$$\alpha = -4\lambda = 4\mu = Z_W.$$

while m_W^2 is not constrained.

After canonically normalization:

$$\mathcal{L}_{W} = -\frac{1}{4} \partial_{[\mu, W_{\nu}]} \cdot \partial_{[\mu, W_{\nu}]} - g \ W_{\mu} \times W_{\nu} \cdot \partial_{\mu} W_{\nu} - m_{W}^{2} \ W_{\mu} \cdot W_{\mu}$$
$$- \frac{g^{2}}{4} \left[(W_{\mu} \cdot W_{\mu})^{2} - (W_{\mu} \cdot W_{\nu})^{2} \right],$$

with $g \equiv Z_W^{-1/2}$. This is a massive Yang-Mills theory!

Exact global symmetry: Ward Identities

For any operator O and a local infinitesimal rotation, $\Lambda(x) = e^{iT^a \epsilon^a(x)}$:

 $\langle -\delta S \ O \rangle + \langle \delta O \rangle = 0,$

with

$$\delta_{\epsilon}S[U,\Omega] = -\sum_{x,\mu,a} V^a_{\mu}(x)\hat{\partial}_{\mu}\epsilon^a(x),$$

Case I:
$$O(y, z) \equiv V^a_\mu(y)V^b_\nu(z)$$

$$\delta_\epsilon V^a_\mu(x) = -\epsilon^{abc} \left[\epsilon^b(x) \ V^c_\mu(x) - \frac{1}{2}\hat{\partial}_\mu\epsilon^b(x) \ V^c_\mu(x)\right] + \frac{1}{4}V^0_\mu(x)\hat{\partial}_\mu\epsilon^a(x),$$

where V^0_{μ} is a singlet under the global symmetry:

$$V^0_{\mu}(x) \equiv \frac{\kappa}{2} \operatorname{Tr}[\Omega(x)^{\dagger} U_{\mu}(x) \Omega(x + \hat{\mu}) + h.c.]$$

We consider

$$\epsilon^{a}(x) = \begin{cases} \epsilon^{a}, & x \in R\\ 0, & x \notin R \end{cases}$$

 $y \in R$ (ie. $0 < y_0 < T$) while $z \notin R$, for example $z_0 > T$

The lattice WI implies

$$\epsilon_{abc} \sum_{\mathbf{x}} \langle (V_0^c(T, \mathbf{x}) - V_0^c(0, \mathbf{x})) V_\mu^a(y) V_\nu^b(z) \rangle = 2 \langle V_\mu^d(y) V_\nu^d(z) \rangle,$$

Matching to the effective theory

$$V^a_\mu = Z^{1/2}_W W^a_\mu \equiv m_W F_W W^a_\mu$$

and evaluating the three-point function to LO in perturbation theory:

$$\frac{1}{\sqrt{Z_W}} = \frac{g}{m_W^2} \to g = \frac{m_W}{F_W}.$$

Case II: $O \to V^b_\mu(y) V^c_\nu(z) V^d_\sigma(u)$

with a = b = c = d and $y, z, u \notin R$

$$\lambda = -\mu.$$

Case III: $O \to V^b_\mu(y) V^c_\nu(z) V^d_\sigma(u)$ with $a = b \neq c = d$

$$\lambda Z_W^{-2} = \frac{-g^2}{4} \to .$$

Global invariance \Rightarrow local invariance in the effective theory of conserved currents

Wilsonian effective theory of massive gauge bosons + Higgs ?

Possibly other light particles will exist in the spectrum. In particular a light scalar could unitarize the theory if it has the properties of the Higgs...

$$H(x) \leftrightarrow V^0_{\mu}(x) \equiv \frac{\kappa}{2} \operatorname{Tr}[\Omega(x)^{\dagger} U_{\mu}(x) \Omega(x + \hat{\mu}) + h.c.]$$

If such a light particle remains in the spectrum how is the effective theory modified ?

Global symmetry allows the following couplings:

$$\mathcal{L}_{H} = \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - V(H) - \lambda_{HWW} H W_{\mu} \cdot W_{\mu} - \lambda_{HHWW} H^{2} W_{\mu} \cdot W_{\mu},$$

The WI in this case implies the following matching:

$$V^a_\mu \to W^a_\mu + 2 \frac{\lambda_{HWW}}{m_W^2} H W^a_\mu + \dots$$

Symmetry does not seem to require the couplings to be those in the SM (i.e.: only ones that make the model perturbatively renormalizable)...

Conclusions

 A gauged non-linear sigma model might be the simplest model for dynamical EWSB

• This is a non-trivial strongly coupled model that needs to be understood non-perturbatively

• Global symmetries indicate that if a continuum limit/scaling region exists it could look very similar to a SSB gauge theory

• Old studies can be very significantly improved with new methods and algorithms developed for QCD