A study of massive gauge theories on the lattice (part II)

Michele Della Morte

IFIC and CSIC Valencia

Lattice 2013, Mainz (Germany), August 2013

In collaboration with Pilar Hernández. In preparation

Let us consider a complex scalar doublet coupled to SU(2) gauge fields

$$S(\beta, \kappa, \lambda, U, \rho, \alpha) = S_{\text{gauge}}(\beta, U) + \sum_{x} \rho(x)^2 - 3\log(\rho(x)) + \lambda(\rho(x)^2 - 1)^2 - \kappa \sum_{\mu > 0} \rho(x)\rho(x + \hat{\mu}) \operatorname{Tr}\left(\alpha(x + \hat{\mu})^{\dagger} U(x, \mu)\alpha(x)\right)$$

[Langguth, Montvay, Weisz 1985]. In the limit $\lambda o \infty
ho$ is frozen to 1. Redefining

$$U(x,\mu) \to \alpha(x+\hat{\mu})^{\dagger} U(x,\mu)\alpha(x)$$
 then

$$S \rightarrow S_{\text{gauge}}(\beta, U) - \kappa \sum_{x,\mu>0} \operatorname{Tr} U(x,\mu)$$

A massive gauge theory ($\kappa \propto m^2$) ? May it be (non-perturbatively) renormalizable ?

In perturbation theory the propagator of a massive spin 1 particle

$$\Delta_{\mu
u} \propto rac{1}{k^2+m^2} \left(\eta_{\mu
u}+rac{k_\mu k_
u}{m^2}
ight)$$

does not fall off with all momentum components at large momentum. The theory is not renormalizable by power counting.

- However it is a theory made of local fields and no couplings of negative mass-dimension (operators of engineering dimension 4 at most in the action).
- The static theory is very similar in this respect. The static quark propagator doesn't fall with all momenta, still the theory is believed to have a continuum limit because dim 4 operators only appear in the static action.

- E - - E -

Previous studies:

- Phase diagram and spectrum of SU(2)+Higgs since mid '80 (and ongoing), by now textbook studies.
- More recently: Massive gauge theories, continuum [J. Gegelia and collab. 2007 ..., R. Ferrari, 2008] and lattice [R. Ferrari and collab. 2012].

No attempt to look at scaling though.

- We start at $\beta = 2.3$, L = 16 and κ s.t. $m_{\rm H}/m_{\rm W} \simeq 1.4$. From [Langguth, Montvay, Weisz 1985] we know $am_{\rm W} \simeq 0.5$.
- We increase β and L, in order to keep $m_{\rm W}L>5$ and tune κ s.t. $m_{\rm H}/m_{\rm W}\simeq 1.4.$
- We look at the scaling of $m_{\rm H}$, $m_{\rm W}$, $F_{\rm W}$ and the static potential.

A B K A B K

We adopt the SU(2) Wilson gauge action plus mass term

$$\kappa \sum_{x,\mu} \operatorname{Tr} \left[\mathcal{I} - rac{1}{2} \left(U_\mu(x) + h.c.
ight)
ight] \quad ext{site refl.pos.}$$

Heatbath and o.r. can be used by adding a term $\propto \kappa \mathcal{I}$ to the staples. Interpolating fields. We consider connected correlators of:

$$\sum_{\vec{x}} \operatorname{Tr} U_{\mu}^{\text{APE}}(x) \quad \text{for } m_{\text{H}}$$
$$\sum_{\vec{x}} \operatorname{Tr} (U_{k}^{\text{APE}}(x)\tau^{a}) \quad \text{for } m_{\text{W}}, \text{ no } \text{APE for } F_{\text{W}}$$

and in addition we considered correlators of Polyakov loops (with APE smearing) for the potential

Massive gauge theories on the lattice (II)

A B F A B F

β	κ	$L^3 imes T$	$am_{ m H}$	$am_{ m W}$	$aF_{ m W}$	$N_{ m meas}$
2.3	0.405	$16^3 imes16$	0.65(2)	0.455(5)	0.146(2)	5.4 M
2.55	0.368	$24^3 imes 24$	0.39(3)	0.25(1)	0.081(2)	1.4 M
2.75	0.356	$36^3 imes 36$	0.31(5)	0.17(1)	0.062(2)	0.7 M

4-point plateau for $m_{\rm H}$, with $\simeq 10\%$ error. Clear exponential problem, a case for the algorithm in [MDM, Giusti, 2008].

Scaling ratios

	$am_{ m H}$	$am_{ m W}$	$aF_{ m W}$
$\frac{\beta=2.3}{\beta=2.55}$	1.67(13)	1.82(7)	1.80(5)
$\frac{\beta=2.55}{\beta=2.75}$	1.26(22)	1.47(10)	1.31(5)

Errors on the tuning of κ still to be propagated.

Massive gauge theories on the lattice (II)

M. Della Morte, August 2013, LAT13 Mainz

문 문 문

From Pilar's talk, at 1 loop

$$a\Lambda=e^{-rac{8}{29}\pi^2eta}$$

문 > 문

$$V(r) = -\frac{1}{T}\log C_{\mathrm{PP}}(r)_{\mathrm{connected}}$$

the mass term breaks central charge conj. $\Rightarrow \langle P \rangle \neq 0$.

• Flattening, signaling expected string breaking due to states associated to the Ω field (in the fundamental of the gauge group).

Massive gauge theories on the lattice (II)

M. Della Morte, August 2013, LAT13 Mainz

As usual we also looked at

$$H(r)=r^2rac{\partial V(r)}{\partial r}$$
,

which also shows good scaling (points seem to fall on a universal curve).

Mixing problem, string and 'static-light' states. The overlap of P (stringy) on the ground state may depend on r. We also considered

$$V^{TT'}(r) = -rac{1}{T-T'} \log\left(rac{C_{
m PP}(r,T)_{
m conn}}{C_{
m PP}(r,T')_{
m conn}}
ight)$$

T dependence of V(r) is consistent with $C_{\rm PP}(r) = w_0(r)e^{-V_0(r)T}$ and $w_0(r) < 1$

Massive gauge theories on the lattice (II)

M. Della Morte, August 2013, LAT13 Mainz

- Massive gauge theories are theoretically interesting by their own and may offer an (Higgsless) alternative to EWSB.
- Exploratory non-perturbative study. We mostly tried to define questions (scaling region ?) and strategies (line of constant physics). A lot of room for technical improvements.
- Rich dynamics, string breaking, several interesting couplings.
- The existence of a scaling region is crucial for the model to be an alternative to the SM Higgs sector. The EFT description should be valid at least in this scaling/universality region.

A B A A B A