Large-N mesons

Gunnar Bali with Luca Castagnini (Regensburg), Biagio Lucini (Swansea), Marco Panero (Helsinki \rightarrow Madrid)

Mainz, August 2, 2013

Outline	Large-N QCD	Simulation details	Results	Conclusions
Larg	ge-N QCD: motivat	tion		
► Latt	ice simulation: det	ails and techniques		
Resi	ults	·		
•	Chiral logs and mes	on masses		

- ▶ NP renormalization, chiral condensate, decay constants
- Spectrum
- Continuum limit
- Conclusions

Outline	Large-N QCD	Simulation details	Results	Conclusions

Example: scalar field theory with N-component field ϕ^a , $a = 1, \dots, N$

$$\mathscr{L} = \frac{1}{2} \partial_{\mu} \phi^{a} \partial^{\mu} \phi^{a} - \frac{1}{2} \mu^{2} \phi^{a} \phi^{a} - \frac{1}{8} g^{2} (\phi^{a} \phi^{a})^{2}.$$

We define the 't Hooft coupling $\lambda = g^2 N$:

Now we take the limit $g^2 \rightarrow 0$ and $N \rightarrow \infty$ at fixed λ ('t Hooft limit). Obviously, this leads to simplifications!

Some properties of large-N QCD

- Sea quark effects $\propto 1/N \Rightarrow$ The $N = \infty$ limit is quenched.
- Mixing glueballs-mesons $\propto 1/\sqrt{N} \Rightarrow$ No mixing between glueballs and mesons at $N = \infty$.
- OZI rule exact at $N = \infty$.

Is $N = \infty$ close to N = 3 QCD?

AdS/QFT starts from $N = \infty$. Also many simplifications in chiral EFT!

But $N = \infty$ QCD is far from being solved!

Light hadrons: $1/N^2 = 1/9 \stackrel{?}{\approx} 3/3 = N_f/N = 3/3$

If $1/9 \approx 0$ then \exists evidence that $1 \approx 0$:

Full SU(3) QCD BMW-c: S Dürr et al 08

Quenched SU(3) PACS-CS: S Aoki et al 02

Obviously cannot work for flavour singlets $(f_0(500), \eta', \omega)$ but still ...

Outline	Large-N QCD	Simulation details	Results	Conclusions
1 attice	navamatara			

Lattice parameters

Volumes:

Ν	vol
2,3	$16^3 \times 32$, $24^3 \times 48$, $32^3 \times 64$
4,5,6,7	$24^3 imes 48$
17	$12^3 imes 24$

- ▶ 200 configs for each N and volume (80 configs for N = 17)
- lattice spacing $a \approx 0.093$ fm
- pion mass as low as $m_\pi pprox 230 \, {
 m MeV}$
- Wilson gluon and quark actions

GB, F Bursa, L Castagnini, S Collins, L Del Debbio, B Lucini, M Panero, JHEP 1306 071 Recently added

- ► 3 additional lattice spacings
- Non-perturbative renormalization

Outline	Large-N QCD	Simulation details	Results	Conclusions
Matchi	ng the scale			

- Inverse coupling β = 2N/g² = 2N²/λ is fixed by imposing a√σ ≈ 0.2093 for all SU(N). (Lattice spacing a ≈ 0.093 fm is kept constant in units of the string tension σ ≈ 1 GeV/fm).
- Other possible choices include $aT_c = \text{const}$, $aF/\sqrt{N} = \text{const}$, etc.
- ► The κ-parameter (2am_q = κ⁻¹ − κ_c⁻¹) is adjusted so that our set of pseudoscalar masses matches between different N (achieved by exploratory simulations).

Plan:

- Vary κ to study $m_A(m_q, N), f_A(m_q, N)$ for each meson A.
- Extrapolate to $N = \infty$ and study $1/N^2$ corrections.

(Outline		Large- <i>I</i> V QCD		Simulation det	ails	Results	Co	nclusions
(Couplings used in main set of configs								
	Ν	2	3	4	5	6	7	17	
	β	2.4645	6.0175	11.028	17.535	25.452	34.8343	208.45	_
	λ	3.246	2.991	2.901	2.851	2.829	2.813	2.773	

 $\lambda = Ng^2 = 2N^2/\beta.$

A Hietanen et al, PLB 674(09)80: SU(17) at $\beta = 208.08$ (We have slightly smaller a).

Strong/weak coupling transition at $\sqrt{\sigma}a\gtrsim 1.2$.

Deconfinement transition (similar to finite-T) at $\sqrt{\sigma}N_sa \lesssim 2$.

In principle one could take $N \to \infty$ at $\lambda = \text{const.}$ (rather than keeping $a\sqrt{\sigma} = \text{const.}$) but:

- SU(3) at $\lambda = 2.773$ ($\beta \approx 6.47$) requires $N_s \gtrsim 20$.
- SU(17) is very coarse at $\lambda = 2.991$.

Axial and vector Takahashi-Ward identity masses

Partially conserved axial current (PCAC):

$$\sum_{x} \partial_4 \langle 0|A_4(x,t)|\pi \rangle = 2m_{\text{PCAC}} \sum_{x} \langle 0|j_5(x,t)|\pi \rangle \quad \text{where} \quad \begin{cases} A_\mu(x) = \bar{u}(x)\gamma_\mu\gamma_5 d(x) \\ j_5(x) = \bar{u}(x)\gamma_5 d(x) \end{cases}$$

$$am_{\text{PCAC}} = \frac{Z_P}{Z_A Z_S} \left(1 + bam_{\text{PCAC}}\right) \underbrace{\frac{1}{2} \left(\frac{1}{\kappa} - \frac{1}{\kappa_c}\right)}_{am_q}$$

Fit parameters (for each N): $Z^{-1} = Z_P/(Z_A Z_S), b, \kappa_c$. SU(3): $Z^{-1} \approx 0.75$ ($\beta = 6.0175$) [agrees with independent determination 0.81(7) at $\beta = 6$ V Giménez et al NPB531 (98) 429]

Pion mass vs. PCAC quark mass

Simulation details

Results

Conclusions

Pion mass: $1/N^2$ fit of the parameters

Expectation (S Sharpe PRD 46 (92) 3146): $\delta = c_1/N + c_2/N^3 + \cdots$

Outline	Large-N QCD	Simulation details	Results	Conclusions

Quenched chiral logs

ρ vs. PCAC mass

Non-perturbative renormalization I

Non-perturbative renormalization II

Gunnar Bali (Regensburg)

Large-N mesons

Scale setting and fixing quark masses

Definitions:

$$f_X = \sqrt{2} F_X \,, \quad F = F_\pi(m_q = 0) \,, \quad \hat{F}_X = \sqrt{rac{3}{N} F_X}$$

At our main lattice spacing: $\hat{F}_{\infty} = 0.20\sqrt{\sigma} \approx 88$ MeV. Real SU(3)-value: 85.9(1.2) MeV. $(\hat{F}/\sqrt{\sigma} \text{ goes down by} \approx 15 \%$ in continuum limit.)

Set scale using F = 85.9 MeV instead of $\sqrt{\sigma} = 1$ GeV/fm ≈ 444 MeV.

Then set
$$m_{ud}, m_s$$
 at $N = \infty$, requiring
 $m_{\pi}(m_{ud}) = 138$ MeV
 $m_{\pi}(m_s) = (m_{K^{\pm}}^2 + m_{K^0}^2 - m_{\pi^{\pm}}^2)^{1/2} \approx 686.9$ MeV.

Meson spectrum and decay constants at $m_q = 0$

Meson spectrum and decay constants at $m_q = m_{ud}, m_s$

Literature: continuum limit in SU(3)

In progress: ${\sf SU}(7pprox\infty)$ continuum limit

Outline	Large-N QCD	Simulation details	Results	Conclusions
Conclusior	าร			

- N = ∞ is a good starting point to study strong decays and mixing between different quark model sectors: glueballs, mesons, "mesons²". Phenomenology of light scalars?
- At $N = \infty$ a connection can be made to AdS/QCD models.
- ► We computed the quenched meson spectrum of SU(N) for degenerate quark masses and extrapolated these to N = ∞. This limit is the same for the theory with sea quarks!
- ► Isovector SU(3) masses, decay constants and chiral condensate are close to the N = ∞ limit.
- $1/N^2$ corrections are small for N = 3.
- The fact that many mass ratios also differ by less than 10% between the $N_f = 2 + 1$ theory and the quenched approximation indicates that N_f/N corrections may often be small too.
- Continuum limit in progress.