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Goal

Measure the mass anomalous dimension of the SU(N) gauge
theory with two adjoint Dirac fermions, using the

Dirac operator mode number method, on a single site lattice
using large N twisted volume reduction.
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Why large N?

Fundamental
Antisymmetric
Symmetric
Adjoint

MWTC

      

[arXiv:hep-ph/0611341]

Expect it to behave
similarly to the SU(2)
gauge theory, MWT

2–loop perturbation
theory predicts γ∗ is
independent of N

Large N volume
independence: can
simulate on a single site
lattice
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Why the Mass Anomalous Dimension?

Size of quark mass terms in the effective action depend on the
value of the anomalous mass dimension γ.

Quark Masses

〈ΨΨ〉ETC

Λ2
ETC

ψψ

Power Enhancement

〈ΨΨ〉ETC =

(
ΛETC

ΛTC

)γ
〈ΨΨ〉TC

Need γ ' 1 to generate large enough quark masses.

Important quantity to measure in TC models.
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Large–N Volume Independence

Eguchi-Kawai ’82

In the limit Nc →∞, the properties of U(Nc ) Yang–Mills theory
on a periodic lattice are independent of the lattice size.

SYM = SEK ≡ Ncb
∑
µ<ν

Tr
(
UµUνU

†
µU
†
ν + h.c.

)
where b = 1

λ = 1
g2Nc

is the inverse bare ’t Hooft coupling, held
fixed as Nc →∞.
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Conditions

...but it turns out only

for single–trace observables defined on the original lattice of
side L, that are invariant under translations through multiples
of the reduced lattice size L′

and if the U(1)d center symmetry is not spontaneously broken,
i.e. on the lattice the trace of the Polyakov loop vanishes.
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Twisted Eguchi–Kawai

Gonzalez–Arroyo Okawa ’83

Impose twisted boundary conditions, such that the classical
minimum of the action preserves a Z 2

N subgroup of the center
symmetry.

STEK = Ncb
∑
µ<ν

Tr
(
zµνUµUνU

†
µU
†
ν + h.c .

)
, zµν = exp{2πik/

√
N}

Center symmetry is preserved for all N by scaling the twist k
with N

Gonzalez–Arroyo Okawa [arXiv:1005.1981]
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Lattice Field Theory

Formulate field theory on a discrete set of
space–time points:

L̂4 points, lattice spacing a

Physical volume L4 = (L̂a)4

Lattice provides regularisation:

UV cut–off: 1/a

IR cut–off: 1/L
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Twisted Reduction

Twisted reduction: L̂→
√
N

Single site lattice, lattice spacing a

Physical volume L4 = (
√
Na)4

Lattice provides regularisation:

UV cut–off: 1/a

IR cut–off: 1/
√
N
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Mode Number Method

In the infinite volume, chiral limit, and for small eigenvalues,

Spectral density of the Dirac Operator

lim
m→0

lim
V→∞

ρ(ω) ∝ ω
3−γ∗
1+γ∗ + . . .

Integral of this is the mode number, which is just counting the
number of eigenvalues of the Dirac Operator on the lattice.

Fitting this to the above form can give a precise value for γ,
as done recently for MWT by Agostino Patella.

DeGrand [arXiv:0906.4543], Del Debbio et. al. [arXiv:1005.2371],
Patella [arXiv:1204.4432], Hasenfratz et. al. [arXiv:1303.7129]
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Mode Number Fit Range

 

m

g

IRFP

UVFP

RG flows in mass–deformed CFT:

Flow from UV (high eigenvalues) to IR
(low eigenvalues)

Finite mass drives us away from FP in
the IR

Interested in intermediate blue region

1√
N
� m� ΩIR < Ω < ΩUV � 1

a
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Fit Function

Split low and high eigenvalue contributions to the mode number:

ν(Ω) =

∫ √Ω2
IR−m2

0
ρ(ω)dω +

∫ √Ω2−m2

√
Ω2

IR−m2

ρ(ω)dω

Inserting ρ(ω) ∼ ω
3−γ∗
1+γ∗ in the second term:

Mode number fit function

ν(Ω) = ν(ΩIR) + A

[(
Ω2 −m2

) 2
1+γ∗ −

(
Ω2

IR −m2
) 2

1+γ∗

]
Fit in range ΩIR < Ω < ΩUV .

3 fit parameters: A, m and γ∗.

Patella [arXiv:1204.4432]
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Simulation Details

Simulate large N version of MWT.

SU(N) gauge theory with 2 light adjoint Dirac fermions with
periodic boundary conditions.

Use single site 14 lattices with N up to 289.

Veff = N2, so equivalent to L4 = 174.

Measure up to 2000 lowest eigenvalues of the Dirac operator.

Choose bare lattice coupling b = 1/λ = 0.35, 0.36.

Need to stay in weak coupling phase.
But want fairly strong coupling to minimise 1/N effects.
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Polyakov Loop

Polyakov loop is zero up to 1/N corrections, so reduction holds.
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Plaquette vs 1/N

Plaquette: see larger finite–N effects for lighter masses.
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Lowest Dirac Eigenvalue vs 1/N

Lowest eigenvalue has two distinct regimes.
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Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is
increased.
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Histogram of eigenvalue density: b=0.36,kp=0.16

N=289, 2000 eigenvalues, 1 config
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Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is
increased.
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Histogram of eigenvalue density: b=0.36,kp=0.16

N=121, 1000 eigenvalues, 20 configs
N=289, 2000 eigenvalues, 1 config
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Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is
increased.
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Histogram of eigenvalue density: b=0.36,kp=0.16

N=49, 150 eigenvalues, 200 configs
N=121, 1000 eigenvalues, 20 configs

N=289, 2000 eigenvalues, 1 config
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Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is
increased.
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Histogram of eigenvalue density: b=0.36,kp=0.16

N=25, 50 eigenvalues, 1200 configs
N=49, 150 eigenvalues, 200 configs

N=121, 1000 eigenvalues, 20 configs
N=289, 2000 eigenvalues, 1 config
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Large volume vs small volume

Large volume regime (p–regime)

mL� 1

λ = m + c/N

Can perform mode number fit

Small volume regime (ε–regime)

mL� 1

λ ∼ 1/L

Can also perform mode number fit (if affected eigenvalues are
excluded from the fit region)

Comparison to chiral random matrix theory?
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Method

Fit data to the function

ν(Ω) = ν(ΩIR) + A

[(
Ω2 −m2

) 2
1+γ∗ −

(
Ω2

IR −m2
) 2

1+γ∗

]
in some intermediate range ΩIR < Ω < ΩUV where

ν(Ω) is the number of eigenvalues of M below Ω2 divided by
the volume

m is a fitted parameter (physical mass)

A is a fitted parameter

γ∗ is the mass anomalous dimension
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Mode Number Example Fit b = 0.35, κ = 0.16

N = 289: A = 1.16× 10−4, (am)2 = 0.068, γ = 0.258
N = 121: A = 1.04× 10−4, (am)2 = 0.108, γ = 0.417
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Mode Number Example Fit b = 0.35, κ = 0.16

N = 289: A = 1.16× 10−4, (am)2 = 0.068, γ = 0.258
N = 121: A = 1.04× 10−4, (am)2 = 0.108, γ = 0.417
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Mass anomalous dimension results [preliminary]
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Mass anomalous dimension results [preliminary]
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Conclusion and Future Work

Promising initial results.

Volume reduction seems to work

Finite volume and finite mass effects understood

Preliminary results give γ ∼ 0.25
(smaller than the string tension determination)

Would like to investigate lighter masses
(larger volumes required)

As well as different bare couplings

Would also be very interesting to compare with nf = 1
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Correlation between γ∗ and m
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2–param fit: fixed am

2–parameter fit: determine am by extrapolating lowest eigenvalue
in 1/N, then fit in γ∗, A with (am)2 = 0.0697 fixed.
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