Twisted reduction in large N QCD with adjoint Wilson fermions

M. Okawa with A. Gonzalez-Arroyo

Twisted space-time reduced model of large N QCD with adjoint Wilson fermions is constructed applying the symmetric twist boundary conditions with flux k for various number of flavors.

For two flavors, the string tension calculated at N=289 approaches zero as we decrease quark mass.

On the contrary, for one flavor, the string tension seems to remain finite as the quark mass decreases to zero.

A preliminary result for the 1/2 flavor theory is also presented (sign of Pfaffian is not included in the observables yet).

Twisted reduced model of large N QCD with adjoint Wilson fermions

We consider gauge group SU(N), $N = L^2$

$$S = b N \sum_{\mu \neq \nu=1}^{d} Tr \left(I - Z_{\mu\nu} U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} \right) - \sum_{j=1}^{N_{f}} \overline{\Psi}_{j} D_{W} \Psi_{j}$$

$$Z_{\mu\nu} = \exp\left(k\frac{2\pi i}{L}\right), \quad Z_{\nu\mu} = Z_{\mu\nu}^*, \qquad \mu > \nu$$

$$D_W = 1 - \kappa \sum_{\mu=1}^{4} \left[(1 - \gamma_\mu) U_\mu^{adj} + (1 + \gamma_\mu) U_\mu^{\dagger adj} \right] , \qquad U_\mu^{adj} \Psi = U_\mu \Psi U_\mu^{\dagger}$$

k, L: co-prime

 $k \neq 0$ corresponds to twisted boundary condition

A. Gonzalez-Arroyo, M.O.

k = 0 corresponds to periodic boundary condition Kovtun, Unsal, Yaffe Hietanen, Narayanan Bringoltz, Koren, Sharpe larger finite N effects compared with $k \neq 0$

Simulations have been done with SU(N), $N = L^2$

$$N = 289$$
 ($L = 17$), $k = 5$

Our model is related to the ordinary SU(N) lattice theory on $V = L^4$ space-time volume up to $O(1/N^2)$ corrections

$$N = 289 \iff V = 17^4$$

We can, then, calculate Wilson loop W(R,R) up to R = 8.

In this talk, string tensions and the lowest eigenvalues of $Q^2 = (D_W \gamma_5)^2$ are calculated both for $N_f = 2$ and $N_f = 1$.

Large N QCD with $N_f = 2$ adjoint fermions

SU(N) LGT with two adjoint fermions is thought to be conformal or nearly conformal for any value of N.

Indeed, the first two coefficients of β function expressed in term of 't Hooft coupling $\lambda = g^2 N$ is independent of N.

$$b_{0} = \frac{4N_{f} - 11}{24\pi^{2}}, \quad b_{1} = \frac{16N_{f} - 17}{192\pi^{4}}$$

• asymptotic free

$$b_{0} < 0 \rightarrow N_{f} < \frac{11}{4} = 2.75$$

• infrared fixed point

$$b_{1} > 0 \rightarrow N_{f} > \frac{17}{16} = 1.08$$

In the last lattice conference at Cairns, we have reported the preliminary results of string tension for $N_f = 2$.

The HMC updation had been done for the following stopping condition during molecular dynamic steps

Let $r = s - Q^2 x$ be the residue with *s* the source.

Then we require $|r|^2 / |s|^2 < 10^{-7}$.

We could only achieve rather low global acceptance ratio R. For example, at b = 0.35, $\kappa = 0.14$

R = 0.500 with $\Delta \tau = 1/800$.

This is due to the weak stopping condition! In fact, we have

R = 0.894 with $\Delta \tau = 1/800$ and $|r|^2/|s|^2 < 10^{-10}$

 $\Delta \tau$ is chosen so that the global acceptance ratio is around 0.9.

For $N_f = 2$, the run at $\kappa = 0.16$ is suffered from finite size effect.

For $N_f = 1$, we can not make simulation for $\kappa > 0.155$ since CG iteration does not converge.

Since the effective lattice size of our system is L^4 , $\frac{1}{N} \langle \operatorname{Re} Tr(U_{\mu})^L \rangle \neq 0$ is a finite size (temperature) effect.

We always check that $\frac{1}{N} \left\langle \operatorname{Re} Tr(U_{\mu})^{\ell} \right\rangle = 0$, $(\ell = 1, L-1)$

• Large Wilson loop at N=289 and k=5

In the reduced model, the Wilson loop W(R,T) is defined by

$$W(R,T) = Z_{\mu\nu}^{RT} \left\langle Tr(U_{\mu}^{R}U_{\nu}^{T}U_{\mu}^{\dagger R}U_{\nu}^{\dagger T}) \right\rangle$$

We use smearing method to obtain good statistics

$$U_{\mu}^{smeared} = \Pr o j_{SU(N)} \left[U_{\mu} + c \sum_{\nu \neq \mu} (z_{\nu\mu} U_{\nu} U_{\mu} U_{\nu}^{\dagger} + z_{\mu\nu} U_{\nu}^{\dagger} U_{\mu} U_{\nu}) \right]$$

with $z_{\mu\nu}$ the twist tensor and $\Pr{oj_{SU(N)}}$ stands for the operator that projects onto the SU(N) matrices.

We choose c=0.1 and made 20 smearing.

String tension

String tension is extracted from the Creutz ratio

$$\chi(R,R) = -\log \frac{W(R+0.5, R+0.5)W(R-0.5, R-0.5)}{W(R+0.5, R-0.5)W(R-0.5, R+0.5)}$$

~ $\sigma + \frac{2\eta}{R^2} + \frac{\xi}{R^4}$

with half integer R.

This method works quite well for the twisted Eguchi-Kawai model for pure gauge theory. In fact, we can determine σ , η , ξ rather precisely.

 η depends only slightly on b .

 η is dimensionless, which could be a universal quantity

as is expected from string theory.

For the theory with adjoint fermions, three parameter fit

$$\chi(R,R) = \sigma + \frac{2\eta}{R^2} + \frac{\xi}{R^4}$$

is unstable, due to small L = 17 compared with L = 29 of TEK model, and due to less statistics.

We fix the value of η to the universal constant depending only on N_{f} .

K

Lowest eigenvalue λ of positive hermitian Wilson Dirac operator

 $Q^2 = (D_W \gamma_5)^2$ is related to the quark mass as

$$D_W = 1 - \kappa \sum_{\mu=1}^{4} \left[(1 - \gamma_\mu) U_\mu^{adj} + (1 + \gamma_\mu) U_\mu^{\dagger adj} \right] = 2\kappa m_q + 2\kappa \partial_\mu \gamma^\mu + \cdots$$

$$\lambda = 4\kappa^2 m_q^2$$

$$m_q = \sqrt{\lambda} / (2\kappa)$$

In the usual QCD, m_{q} is expected to depend on κ as

$$m_q = (1/\kappa - 1/\kappa_c) / 2$$

However, for $N_f = 2$ adjoint theory, this is not the case. In fact, by fitting m_a with the following function,

$$m_q = \sqrt{\lambda} / (2\kappa) = A \left(\frac{1}{\kappa} - \frac{1}{\kappa_c} \right)^{\delta} \left(1 + B \left(\frac{1}{\kappa} - \frac{1}{\kappa_c} \right) \right)$$

We have $\,\delta = 0.914(1)\,$.

On the contrary, for N_f =1 case, we have δ =1.001(1) .

K

If the theory is governed by an infrared fixed point with the relevant mass term $m_q \overline{\psi} \psi$, all physical quantity having mass dimension should vanish as $m_q \rightarrow 0$.

In particular, the string tension having mass square dimension should behave as

$$\sigma = Am_q^{2/(1+\gamma_*)}(1+Bm_q)$$

with γ_* the mass anomalous dimension at infrared fixed point and we have included possible $O(m_a)$ correction. We get

$$\gamma_* = 0.70(15)$$
 ($\eta = 0.26$)
 $\gamma_* = 0.89(16)$ ($\eta = 0.21$)
 $\gamma_* = 0.56(16)$ ($\eta = 0.30$)

Motivation for $N_f = 1$ adjoint fermion

In the large N limit, $N_f = 1$ adjoint fermion is equivalent to $N_f = 2$ fundamental fermion in rank two anti-symmetric rep. (Armoni, Shifman, Veneziano, Kovtun, Unsal, Yaffe)

For N=3, the latter theory is just two flavor QCD and our model corresponds to Corrigan-Ramond large-N limit.

We then expect the reduced model of $N_f = 1$ adjoint fermion as confining theory

Preliminary result for the 1/2 flavor theory (sign of Pfaffian is not included in the observables yet)

Preliminary result for the 1/2 flavor theory (sign of Pfaffian is not included in the observables yet)

Conclusion

We have demonstrated that the twisted reduced model of large N QCD with adjoint Wilson fermions works quite well.

For two flavors, string tension is calculated at N=289, which clearly decreases as we decrease m_a and seems to vanish at $m_a = 0$.

Reliable estimation of mass anomalous dimension γ_* requires more data for small m_q .

Use larger N on 1^4 lattice. Make simulation on 2^4 lattice (Narayanan Neuberger)

Use eigenvalue distribution of $Q^2 = (D_W \gamma_5)^2$ (next talk by Keegan)

For $N_f = 1, 1/2$, string tension remain finite as we decrease m_q , indicating that these theories are confining.