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The March of GPUs
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QCD applications

« Some examples

— MILC (FNAL, Indiana, Arizona, Utah)
 strict C, MPI only

— CPS (Columbia, Brookhaven, Edinburgh)
* C++ (but no templates), MPI and partially threaded

— Chroma (Jefferson Laboratory, Edinburgh)

« C++ expression-template programming, MPI and threads
— BQCD (Berlin QCD)
* F90, MPI and threads
» Each application consists of 100K-1M lines of code

 Porting each application not directly tractable
— OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)
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Enter QUDA @:cDAC, .

e “QCD on CUDA” - http://lattice.github.com/quda
— Written in C / C++ / Python

o Effort started at Boston University in 2008, now in wide use as the
GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge-field generation
* Maximize performance

— Exploit physical symmetries

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Cache blocking
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QUDA is community driven nVIDIA

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

= Rich Brower (Boston University)

= Michael Cheng (Boston University)

= Justin Foley (University of Utah)

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jlab)

= Hyung-Jin Kim (BNL)

= Jian Liang (IHEP)

= (Claudio Rebbi (Boston University)

=  Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (FNAL)

= Alejandro Vaquero (Cyprus Institute)

= Frank Winter (Jlab)
= Yibo Yang (IHEP) P [
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QUDA Mission Statement VD12

* QUDA is
— a library enabling legacy applications to run on GPUs
— open source so anyone can join the fun
— evolving

* more features
 cleaner, easier to maintain
— a research tool into how to reach the exascale
* Lessons learned are mostly (platform) agnostic
» Domain-specific knowledge is key
* Free from the restrictions of DSLs, e.g., multigrid in QDP
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QUDA High-Level Interface VIDIZ

 QUDA default interface provides a simple
view for the outside world

e CorFortran
* Host applications simply pass cpu-side

#include <quda.h>
int main() {

// initialize the QUDA library

or gpu-side pointers (new!) initouda(device);
* QUDA takes care of all field reordering // load the gauge field

and data Copying loadGaugeQuda( (void*)gauge, &gauge param);
* No GPU code in user application // perform the linear solve

invertQuda(spinorOut, spinorIn, &inv_param);

* Limitation
// free the gauge field
* No control over memory management freeGaugeQuda();

* No external opaque gpu objects // finalize the QUDA library
. . . endQuda() ;
e (Considering different strawman
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The Kepler Architecture nvipi.

* Kepler K20K

PCle I 8.0 GB/s per direction

— 2688 processing cores
— 3995 SP Gflops peak (665.5 fma)
— Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
— As we move away from registers
* Bandwidth decreases
* Latency increases

— Each level imposes a minimum arithmetic
intensity to achieve peak

* Limited on-chip memory
— 65,536 32-bit registers, 255 registers per thread

Core | | Core C C .
2 2 || — 48 KiB shared memory
Core . Core . _ 1 5 M-IB L2
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Mapping the Wilson Dslash to CUDA =

e Assign a single space-time point to each thread
e V =XYZT threads
o V =244=>3.3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must
e Load the neighboring spinor (24 numbers x8)
e Load the color matrix connecting the sites (18 numbers x8)
e Do the computation

e Save the result (24 numbers)

e Arithmetic intensity
e 1320 floating point operations per site
e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity
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Mapping the Wilson Dslash to CUDA =

e Assign a single space-time point to each thread
e V =XYZT threads
e V =24%=> 3.3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must

e Load the neighboring spinor (24 numbers x8)

e Load the color matrix connecting the sites (18 numbers x8) Tesla K20X

e Do the computation

e Save the result (24 numbers)
e Arithmetic intensity

e 1320 floating point operations per site

e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity
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Reducing Memory Traffic VDI

e SU(3) matrices are all unitary complex matrices with det = 1
e 12-number parameterization: reconstruct full matrix on the fly in registers

ai az as a1 az as
b1 b2 b3 b by bz J €= (axb)*
C1 C2 C3

o Additional 384 flops per site
e Also have an 8-number parameterization (requires sin/cos and sqrt)
e Impose similarity transforms to increase sparsity

e Still memory bound - Can further reduce memory traffic by truncating the precision
e Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
e Almost a free lunch (small increase in iteration count)
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Kepler Wilson-Dslash Performance =

v—v¥ Half 8 GF
Half &8
A—A Half 12

Single 8 GF
B Single 8

@—@ Single 12 K20X Dslash performance

V = 243xT
Wilson-Clover is £10%

N
al}
Q 500
[
5

GeForce GTX Titan
>1 TFLOPS

32
Temporal Extent
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Krylov Solver Implementation

* Complete solver be on GPU
while (Jri/> €) {
e Transfer b to GPU (reorder) Bk = (ri,rk)/(r-1,re-1)
. k+1 = Ik - PPk
«  Solve Mx=b conjugate P Pep

gradient o = (ri,rv)/(pr+1,Apk+1)
ri+1 = Ik - 0APk+1

) ) Xk+1 = Xk T OPk+1
* Entire algorithms must run on GPUs Kk = k+1

e Transfer x to CPU (reorder)

* Time-critical kernel is the stencil application (SpMV)

* Also require BLAS level-1 type operations
e e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

e Roll our own kernels for kernel fusion and custom precision
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Kepler Wilson-Solver Performance >

nviDiAa
<4—« Single-12 / Half-8-GF
A—A Single-12 / Half-8
Single-12 / Half-12
B—m Single-12 / Single-8 K20X performance

0@ Single-12 V = 243xT
Wilson-Clover is £10%
BiCGstab is -10%
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32
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Multi-dimensional lattice decomposition nvioia
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Domain Decomposition

Non-overlapping blocks - simply have to
switch off inter-GPU communication

Preconditioner is a gross approximation

— Use an iterative solver to solve
each domain system

— Require only 10 iterations of
domain solver = 16-bit

— Need to use a flexible solver = GCR

Block-diagonal preconditoner impose A cutoff

Finer Blocks lose long-wavelength/low-energy modes
— keep wavelengths of ~ O(Aqco™?), Aaqcp '~ 1fm

Aniso clover: (as=0.125fm, a:=0.035fm) = 83x32 blocks are ideal
— 483x512 lattice: 83x32 blocks = 3456 GPUs
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Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

Results from TitanDev o

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

- _1__ 1 T ___T___ e — - ___L___T7]
100 Tflops
— 7.5 Tflops =
L 38 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
H —¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
1 A—a Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain -
Decomposed preconditioner
L ' | ' L ' L ' l
32 64 128 256 512 1024 2048 4096 8192

NVIDIA.
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Chroma (Lattice QCD) — rf%;\
High Energy & Nuclear Physics

Chroma
. :
48°x512 lattice g “XK7" node = XK7 (1x K20X + 1x Interlagos)
Relative Scaling (Application Time) “XE6” node = XE6 (2x Interlagos)
18 1 XK7 (K20X) (DD+GCR) _
16 A T
14 A
o)
| XK7 (K20X) (BiCGStab) 5:36xVs. XE6
& 10 /@1152 nodes
2 s-
ki
¢ 67 i
= XE6 (2x Interlagos)
2
0 128 256 384 512 640 768 896 1024 1152 1280

# Nodes
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Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX) @

L L N NVIDIA.
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MILC on QUDA >

* Gauge generation benchmark 256 BW nodes

e Volume = 243x64 MILC GPU Performance
e QUDA: solver, forces, fat link

e MILC: long link, outer product

e MILC is multi-process only
e 6x net gain in performance
e But potential >8x gain in performance
e Porting remaining functions (J. Foley)
e Long link next week

e QOuter product after that 0 1.0 1.0 1.0 1.0
N N n n

2xCPU 2xCPU + 2xCPU 2xCPU + 2xCPU 2xCPU + 2xCPU 2xCPU +
2xGPU 2xGPU

2
o
o
X
o~
]
e
[
2
B
L
[}
o
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GPU Roadmap
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GPUDirect AVIDIA

Cyctermnm Cyctem

SYsSLEm System
ey \"DRE NDRE \"DRE NDRE

memory \ S \ S \ s \ s memory

Server 1 Server 2

» GPUDirect RDMA will radically improve strong scaling
— Coming in soon in QUDA
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Future Directions AVIDIA

* LQCD coverage (avoiding Amdahl)

— Remaining force terms needed for gauge generation
— Contractions
— Eigenvector solvers (EigCG probably first)

* Performance
— Locality
— Learning from today’s lessons (software and hardware)

 Hierarchical Algorithm Toolbox
— Adaptive Multigrid
— Domain decomposition
— Mixed-precision solvers
— Provide an environment to experiment with optimal scalable solvers
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mclark at nvidia dot com e

Conclusions

* Introduction to QUDA

* Optimal performance required domain-specific
knowledge

» Legacy Applications ready for accelerators

« Still lots of work to do
— New developers welcome

 Lessons today are relevant for Exascale preparation
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Chroma (Lattice QCD) — rfl%A
High Energy & Nuclear Physics

Chroma
243x128 lattice
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge

6.8

1.0
0.5

Relative to 2x CPU
O =~ N W d O O N

1xCPU 2xCPU K20X
CPU Single-Socket Dual-Socket
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Future Directions - Communication

* Only scratched the surface of domain-
decomposition algorithms

— Disjoint additive

— Overlapping additive

— Alternating boundary conditions
— Random boundary conditions

— Multiplicative Schwarz

— Precision truncation
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Future Directions - Latency

* Global sums are bad
— Global synchronizations
— Performance fluctuations
e New algorithms are required
- S-step CG / BiCGstab, etc.
— E.g., Pipeline CG vs. Naive
* One-sided communication
— MPI-3 expands one-sided communications
— Cray Gemini has hardware support
— Asynchronous algorithms?
« Random Schwarz has exponential convergence

GFLOPS
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Multi-dimensional
Communications Pipeline

Total 9 cuda Streams exterior

kernels
Interiorkernel X Y Z T

—_—

0: kernels

GPU kernel
_ . cudaMemcpy
sync
7: T-backward _
5 THorvard i
=

gather kernel’

memcpy (host)

MPI send/recv

GPU idle

(] N BN B .

NVIDIA.
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Hierarchical algorithms on heterogeneous architectures "V'"'~

e GPU

sessssss mmmssss | Thousands of cores
s=emmnas meeenns | fOr parallel processing

Few Cores optimized
for serial work
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Domain Decomposition

(Re)Start Generate Subspace

Apply Preconditioner:
reduced precision inner solve
Reduced Precision
Mv

Bikx = (2i, 2x)

Orthogonalize Z-s

Y = || 2k ||

normalize 2

repeat for all k or

Quantities with A are until residuum drops

in reduced precision

<3

nvinin

Update Solution

Solve for yi 1=kk-1,...,0:

Full precision restart
if not converged
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Run-time autotuning AVIDI 2

= Motivation:

— Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

= Design objectives:

— Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling” nVIDIA

= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50
0 -

® BlockDim only
M BlockDim & Blocks/SM

GTX 580 | GTX 680 GTX 680 | GTX580 | GTX 680

Double
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Run-time autotuning: Implementation """

» Parameters stored in a global cache:
static std::map<TuneKey, > tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

is a struct specifying the tune blockDim, gridDim,
etc.

= Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:

TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,
QudaVerbosity verbosity);
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Run-time autotuning: Usage nVIDIZ

= Before:
myKernelWrapper(a, b, c);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

* Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.
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Virtual member functions of Tunable "™

* [nvoke the kernel (tuning if necessary):
— apply()
= Save and restore state before/after tuning:
— preTune(), postTune()
* Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default
* Performance reporting
— flops(), bytes(), perfString()
" etc.
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Future Directions - Locality

* Where locality does not exist, let’s create it
— E.g., Multi-source solvers
- Staggered Dslash performance, K20X

- Transform a memory-bound
into a cache-bound problem

- Entire solver will remain
bandwidth bound

GFLOPS
w .
S
<)

7 8 9 10 11 12
f sources

) i um S
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Future Directions - Precision

* Mixed-precision methods have become de facto
— Mixed-precision Krylov solvers
— Low-precision preconditioners

» Exploit closer coupling of precision and algorithm
— Domain decomposition, Adaptive Multigrid
— Hierarchical-precision algorithms

— 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit
e Low precision is lossy compression
» Low-precision tolerance is fault tolerance
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Adaptive Multigrid

32°x256 anisotropic clover on 1024 BG/P cores

mixed precision BiCGStab ==
mixed precision multigrid ==t

()
=
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§e)
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%)

-0.088 -0.086 -0.084 -0.082 -0.08 -0.078 -0.076 -0.074
mass

Osborn et al, arXiv:1011.2775
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QU DA Low-Level Interface (in development)

* Possible strawman under consideration

lat = QUDA new lattice(dims, ndim, lat param);

u = QUDA new link field(lat, gauge param);

source = QUDA new site field(lat, spinor_param);
solution = QUDA new site field(lat, spinor param);
QUDA load link field(u, host u, gauge order);

QUDA load site field(source, host source, spinor order);
QUDA solve(solution, source, u, solver);

QUDA save site field(solution, host solution, spinor order);
QUDA destroy site field(source);

etc...

* Here, src, sol, etc. are opaque objects that know about the GPU
 Allows the user to easily maintain data residency

» Users can easily provide their own kernels

* High-level interface becomes a compatibility layer built on top
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