/

M Clark, NVIDIA
Developer Technology Group\ \

Friday, August 2, 13

The March of GPUs

Peak Double Precision FP Peak Memory Bandwidth
1500 Kepler+ 300 - Kepler+
Kepler Kepler
1200 . 250 - Fermi+
Fermi+ M2090
M2090
200 A
is 900 {s
) £ 150 -
= @
© 600 © 8-core
8-core 100 Sandy Bridge
Sandy Bridge Westmere 3 GHz
300 Westmere 3 GHz cg | Nehalem 3 GHz
M1060 ehalem 3GH; 3 GHz
3 GHz
0 o : : : : : .
2007 2008 2009 2010 2011 2012 2013 2007 2008 2009 2010 2011 2012 2013
== Double Precision: NVIDIA GPU =@=Double Precision: x86 CPU ==NVIDIA GPU (ECC off) =-x86 CPU

2

Friday, August 2, 13

QCD applications

« Some examples

— MILC (FNAL, Indiana, Arizona, Utah)
 strict C, MPI only

— CPS (Columbia, Brookhaven, Edinburgh)
* C++ (but no templates), MPI and partially threaded

— Chroma (Jefferson Laboratory, Edinburgh)

« C++ expression-template programming, MPI and threads
— BQCD (Berlin QCD)
* F90, MPI and threads
» Each application consists of 100K-1M lines of code

 Porting each application not directly tractable
— OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)

Friday, August 2, 13

S

™MyY’/71IMMi N

Enter QUDA @:cDAC, .

e “QCD on CUDA” - http://lattice.github.com/quda
— Written in C / C++ / Python

o Effort started at Boston University in 2008, now in wide use as the
GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge-field generation
* Maximize performance

— Exploit physical symmetries

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures
— Cache blocking

Friday, August 2, 13

http://lattice.github.com/quda
http://lattice.github.com/quda

<3

QUDA is community driven nVIDIA

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

= Rich Brower (Boston University)

= Michael Cheng (Boston University)

= Justin Foley (University of Utah)

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jlab)

= Hyung-Jin Kim (BNL)

= Jian Liang (IHEP)

= (Claudio Rebbi (Boston University)

= Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (FNAL)

= Alejandro Vaquero (Cyprus Institute)

= Frank Winter (Jlab)
= Yibo Yang (IHEP) P [

Friday, August 2, 13

Chroma

Dslashes MDWF QDPQOP QUDA

<X
QUDA Mission Statement VD12

* QUDA is
— a library enabling legacy applications to run on GPUs
— open source so anyone can join the fun
— evolving

* more features
 cleaner, easier to maintain
— a research tool into how to reach the exascale
* Lessons learned are mostly (platform) agnostic
» Domain-specific knowledge is key
* Free from the restrictions of DSLs, e.g., multigrid in QDP

Friday, August 2, 13

>
QUDA High-Level Interface VIDIZ

 QUDA default interface provides a simple
view for the outside world

e CorFortran
* Host applications simply pass cpu-side

#include <quda.h>
int main() {

// initialize the QUDA library

or gpu-side pointers (new!) initouda(device);
* QUDA takes care of all field reordering // load the gauge field

and data Copying loadGaugeQuda((void*)gauge, &gauge param);
* No GPU code in user application // perform the linear solve

invertQuda(spinorOut, spinorIn, &inv_param);

* Limitation
// free the gauge field
* No control over memory management freeGaugeQuda();

* No external opaque gpu objects // finalize the QUDA library
. . . endQuda() ;
e (Considering different strawman

Friday, August 2, 13

S

The Kepler Architecture nvipi.

* Kepler K20K

PCle I 8.0 GB/s per direction

— 2688 processing cores
— 3995 SP Gflops peak (665.5 fma)
— Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
— As we move away from registers
* Bandwidth decreases
* Latency increases

— Each level imposes a minimum arithmetic
intensity to achieve peak

* Limited on-chip memory
— 65,536 32-bit registers, 255 registers per thread

Core | | Core C C .
2 2 || — 48 KiB shared memory
Core . Core . _ 1 5 M-IB L2

Friday, August 2, 13

Mapping the Wilson Dslash to CUDA =

e Assign a single space-time point to each thread
e V =XYZT threads
o V =244=>3.3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must
e Load the neighboring spinor (24 numbers x8)
e Load the color matrix connecting the sites (18 numbers x8)
e Do the computation

e Save the result (24 numbers)

e Arithmetic intensity
e 1320 floating point operations per site
e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity

Friday, August 2, 13

Mapping the Wilson Dslash to CUDA =

e Assign a single space-time point to each thread
e V =XYZT threads
e V =24%=> 3.3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must

e Load the neighboring spinor (24 numbers x8)

e Load the color matrix connecting the sites (18 numbers x8) Tesla K20X

e Do the computation

e Save the result (24 numbers)
e Arithmetic intensity

e 1320 floating point operations per site

e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity

Friday, August 2, 13

N
Reducing Memory Traffic VDI

e SU(3) matrices are all unitary complex matrices with det = 1
e 12-number parameterization: reconstruct full matrix on the fly in registers

ai az as a1 az as
b1 b2 b3 b by bz J €= (axb)*
C1 C2 C3

o Additional 384 flops per site
e Also have an 8-number parameterization (requires sin/cos and sqrt)
e Impose similarity transforms to increase sparsity

e Still memory bound - Can further reduce memory traffic by truncating the precision
e Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
e Almost a free lunch (small increase in iteration count)

Friday, August 2, 13

Kepler Wilson-Dslash Performance =

v—v¥ Half 8 GF
Half &8
A—A Half 12

Single 8 GF
B Single 8

@—@ Single 12 K20X Dslash performance

V = 243xT
Wilson-Clover is £10%

N
al}
Q 500
[
5

GeForce GTX Titan
>1 TFLOPS

32
Temporal Extent

Friday, August 2, 13

Krylov Solver Implementation

* Complete solver be on GPU
while (Jri/> €) {
e Transfer b to GPU (reorder) Bk = (ri,rk)/(r-1,re-1)
. k+1 = Ik - PPk
« Solve Mx=b conjugate P Pep

gradient o = (ri,rv)/(pr+1,Apk+1)
ri+1 = Ik - 0APk+1

)) Xk+1 = Xk T OPk+1
* Entire algorithms must run on GPUs Kk = k+1

e Transfer x to CPU (reorder)

* Time-critical kernel is the stencil application (SpMV)

* Also require BLAS level-1 type operations
e e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

e Roll our own kernels for kernel fusion and custom precision

Friday, August 2, 13

Kepler Wilson-Solver Performance >

nviDiAa
<4—« Single-12 / Half-8-GF
A—A Single-12 / Half-8
Single-12 / Half-12
B—m Single-12 / Single-8 K20X performance

0@ Single-12 V = 243xT
Wilson-Clover is £10%
BiCGstab is -10%

70
[a)
S 400
(e
3

32
Temporal Extent

Friday, August 2, 13

>

Multi-dimensional lattice decomposition nvioia

@y Lt Leod
- @ .

Qﬁ 2 Wl
-

Friday, August 2, 13

Domain Decomposition

Non-overlapping blocks - simply have to
switch off inter-GPU communication

Preconditioner is a gross approximation

— Use an iterative solver to solve
each domain system

— Require only 10 iterations of
domain solver = 16-bit

— Need to use a flexible solver = GCR

Block-diagonal preconditoner impose A cutoff

Finer Blocks lose long-wavelength/low-energy modes
— keep wavelengths of ~ O(Aqco™?), Aaqcp '~ 1fm

Aniso clover: (as=0.125fm, a:=0.035fm) = 83x32 blocks are ideal
— 483x512 lattice: 83x32 blocks = 3456 GPUs

Friday, August 2, 13

128
64
32
16
8
~
2 .
§ 4
3 2
S
&
k= |
05
0.25
0.125
0.0625

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

Results from TitanDev o

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

- _1__ 1 T ___T___ e — - ___L___T7]
100 Tflops
— 7.5 Tflops =
L 38 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
H —¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
1 A—a Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain -
Decomposed preconditioner
L ' | ' L ' L ' l
32 64 128 256 512 1024 2048 4096 8192

NVIDIA.

Friday, August 2, 13

Chroma (Lattice QCD) — rf%;\
High Energy & Nuclear Physics

Chroma
. :
48°x512 lattice g “XK7" node = XK7 (1x K20X + 1x Interlagos)
Relative Scaling (Application Time) “XE6” node = XE6 (2x Interlagos)
18 1 XK7 (K20X) (DD+GCR) _
16 A T
14 A
o)
| XK7 (K20X) (BiCGStab) 5:36xVs. XE6
& 10 /@1152 nodes
2 s-
ki
¢ 67 i
= XE6 (2x Interlagos)
2
0 128 256 384 512 640 768 896 1024 1152 1280

Nodes

Friday, August 2, 13

Clover Propagator Benchmark on Titan: Strong Scaling, QUDA+Chroma+QDP-JIT(PTX) @

L L N NVIDIA.

400 |- —

350 |- —~

i GO BiCGStab: 72°x256 | |

200 £ DD+GCR: 72°x256 | _

! 3—£1 BiCGStab: 96°x256 | _

© 950 A—A DD+GCR: 967x256 | |
ol

o L]
=

= 200 |- _

150 |- —~

! -]

! & R °]

50 Cc—© ~ _

B | | | | I B.Jloo, F. Win‘ier (JLab), M. Clark (NVIDIA) 7

0
0 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUs)

Friday, August 2, 13

MILC on QUDA >

* Gauge generation benchmark 256 BW nodes

e Volume = 243x64 MILC GPU Performance
e QUDA: solver, forces, fat link

e MILC: long link, outer product

e MILC is multi-process only
e 6x net gain in performance
e But potential >8x gain in performance
e Porting remaining functions (J. Foley)
e Long link next week

e QOuter product after that 0 1.0 1.0 1.0 1.0
N N n n

2xCPU 2xCPU + 2xCPU 2xCPU + 2xCPU 2xCPU + 2xCPU 2xCPU +
2xGPU 2xGPU

2
o
o
X
o~
]
e
[
2
B
L
[}
o

Friday, August 2, 13

. N\
\ e
Future Directions™

A X2

~

GPU Roadmap

32 sRiae
5. | Volta
| Stacked DRAM
16 s :
& | Maxwell
(’F | Unified Virtual Memory
i ,
= & | Kepler
= ™ | Dynamic Parallelism
O 4 ’
o
(Va)
(a — F c
S 2 & | Fermi
&5 | Fro4
(a8
()
1
0.5 & Tesla
= | cupa
2008 2010 2012 2014

Friday, August 2, 13

<X
GPUDirect AVIDIA

Cyctermnm Cyctem

SYsSLEm System
ey \"DRE NDRE \"DRE NDRE

memory \ S \ S \ s \ s memory

Server 1 Server 2

» GPUDirect RDMA will radically improve strong scaling
— Coming in soon in QUDA

Friday, August 2, 13

Future Directions AVIDIA

* LQCD coverage (avoiding Amdahl)

— Remaining force terms needed for gauge generation
— Contractions
— Eigenvector solvers (EigCG probably first)

* Performance
— Locality
— Learning from today’s lessons (software and hardware)

 Hierarchical Algorithm Toolbox
— Adaptive Multigrid
— Domain decomposition
— Mixed-precision solvers
— Provide an environment to experiment with optimal scalable solvers

Friday, August 2, 13

<3

mclark at nvidia dot com e

Conclusions

* Introduction to QUDA

* Optimal performance required domain-specific
knowledge

» Legacy Applications ready for accelerators

« Still lots of work to do
— New developers welcome

 Lessons today are relevant for Exascale preparation

Friday, August 2, 13

mailto:mclark@nvidia.com
mailto:mclark@nvidia.com

~\
_\
AN
N\
\
b
\\.
>
e EAN
- -
N =
2N
4/ \\
N\ 3
N

Backup slides Y

N\ /\

~

Chroma (Lattice QCD) — rfl%A
High Energy & Nuclear Physics

Chroma
243x128 lattice
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge

6.8

1.0
0.5

Relative to 2x CPU
O =~ N W d O O N

1xCPU 2xCPU K20X
CPU Single-Socket Dual-Socket

Friday, August 2, 13

<3

Y7011 N

Future Directions - Communication

* Only scratched the surface of domain-
decomposition algorithms

— Disjoint additive

— Overlapping additive

— Alternating boundary conditions
— Random boundary conditions

— Multiplicative Schwarz

— Precision truncation

Friday, August 2, 13

Future Directions - Latency

* Global sums are bad
— Global synchronizations
— Performance fluctuations
e New algorithms are required
- S-step CG / BiCGstab, etc.
— E.g., Pipeline CG vs. Naive
* One-sided communication
— MPI-3 expands one-sided communications
— Cray Gemini has hardware support
— Asynchronous algorithms?
« Random Schwarz has exponential convergence

GFLOPS

Friday, August 2, 13

Multi-dimensional
Communications Pipeline

Total 9 cuda Streams exterior

kernels
Interiorkernel X Y Z T

—_—

0: kernels

GPU kernel
_ . cudaMemcpy
sync
7: T-backward _
5 THorvard i
=

gather kernel’

memcpy (host)

MPI send/recv

GPU idle

(] N BN B .

NVIDIA.

Friday, August 2, 13

>

Hierarchical algorithms on heterogeneous architectures "V'"'~

e GPU

sessssss mmmssss | Thousands of cores
s=emmnas meeenns | fOr parallel processing

Few Cores optimized
for serial work

Friday, August 2, 13

Domain Decomposition

(Re)Start Generate Subspace

Apply Preconditioner:
reduced precision inner solve
Reduced Precision
Mv

Bikx = (2i, 2x)

Orthogonalize Z-s

Y = || 2k ||

normalize 2

repeat for all k or

Quantities with A are until residuum drops

in reduced precision

<3

nvinin

Update Solution

Solve for yi 1=kk-1,...,0:

Full precision restart
if not converged

Friday, August 2, 13

S

Run-time autotuning AVIDI 2

= Motivation:

— Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

= Design objectives:

— Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.

Friday, August 2, 13

S

Auto-tuned “warp-throttling” nVIDIA

= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50
0 -

® BlockDim only
M BlockDim & Blocks/SM

GTX 580 | GTX 680 GTX 680 | GTX580 | GTX 680

Double

Friday, August 2, 13

GTX 580

S

Run-time autotuning: Implementation """

» Parameters stored in a global cache:
static std::map<TuneKey, > tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

is a struct specifying the tune blockDim, gridDim,
etc.

= Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:

TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,
QudaVerbosity verbosity);

Friday, August 2, 13

S

Run-time autotuning: Usage nVIDIZ

= Before:
myKernelWrapper(a, b, c);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

* Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.

Friday, August 2, 13

O
Virtual member functions of Tunable "™

* [nvoke the kernel (tuning if necessary):
— apply()
= Save and restore state before/after tuning:
— preTune(), postTune()
* Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default
* Performance reporting
— flops(), bytes(), perfString()
" etc.

Friday, August 2, 13

<3
Future Directions - Locality

* Where locality does not exist, let’s create it
— E.g., Multi-source solvers
- Staggered Dslash performance, K20X

- Transform a memory-bound
into a cache-bound problem

- Entire solver will remain
bandwidth bound

GFLOPS
w .
S
<)

7 8 9 10 11 12
f sources

) i um S
Friday, August 2, 13

<3

M™NY71I N

Future Directions - Precision

* Mixed-precision methods have become de facto
— Mixed-precision Krylov solvers
— Low-precision preconditioners

» Exploit closer coupling of precision and algorithm
— Domain decomposition, Adaptive Multigrid
— Hierarchical-precision algorithms

— 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit
e Low precision is lossy compression
» Low-precision tolerance is fault tolerance

Friday, August 2, 13

=
Adaptive Multigrid

32°x256 anisotropic clover on 1024 BG/P cores

mixed precision BiCGStab ==
mixed precision multigrid ==t

()
=
(@)
%)
S
)
Q
%)
§e)
c
o
&)
()
%)

-0.088 -0.086 -0.084 -0.082 -0.08 -0.078 -0.076 -0.074
mass

Osborn et al, arXiv:1011.2775

Friday, August 2, 13

<3

QU DA Low-Level Interface (in development)

* Possible strawman under consideration

lat = QUDA new lattice(dims, ndim, lat param);

u = QUDA new link field(lat, gauge param);

source = QUDA new site field(lat, spinor_param);
solution = QUDA new site field(lat, spinor param);
QUDA load link field(u, host u, gauge order);

QUDA load site field(source, host source, spinor order);
QUDA solve(solution, source, u, solver);

QUDA save site field(solution, host solution, spinor order);
QUDA destroy site field(source);

etc...

* Here, src, sol, etc. are opaque objects that know about the GPU
 Allows the user to easily maintain data residency

» Users can easily provide their own kernels

* High-level interface becomes a compatibility layer built on top

Friday, August 2, 13

