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QCD applications

• Some examples
– MILC (FNAL, Indiana, Arizona, Utah)

• strict C, MPI only

– CPS (Columbia, Brookhaven, Edinburgh)
• C++ (but no templates), MPI and partially threaded

– Chroma (Jefferson Laboratory, Edinburgh)
• C++ expression-template programming, MPI and threads

– BQCD (Berlin QCD)
• F90, MPI and threads

• Each application consists of 100K-1M lines of code
• Porting each application not directly tractable

– OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)
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Enter QUDA

• “QCD on CUDA” – http://lattice.github.com/quda
— Written in C / C++ / Python

• Effort started at Boston University in 2008, now in wide use as the 
GPU backend for BQCD, Chroma, CPS, MILC, etc.

• Provides:
— Various solvers for several discretizations, including multi-GPU support and 

domain-decomposed (Schwarz) preconditioners
— Additional performance-critical routines needed for gauge-field generation

• Maximize performance
– Exploit physical symmetries
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Cache blocking
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QUDA is community driven
§ Ron Babich (NVIDIA)

§ Kip Barros (LANL)

§ Rich Brower (Boston University)

§ Michael Cheng (Boston University)

§ Justin Foley (University of Utah)

§ Joel Giedt (Rensselaer Polytechnic Institute)

§ Steve Gottlieb (Indiana University)

§ Bálint Joó (Jlab)

§ Hyung-Jin Kim (BNL)

§ Jian Liang (IHEP)

§ Claudio Rebbi (Boston University)

§ Guochun Shi (NCSA -> Google)

§ Alexei Strelchenko (FNAL)

§ Alejandro Vaquero (Cyprus Institute)

§ Frank Winter (Jlab)

§ Yibo Yang (IHEP)
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QUDA Mission Statement

• QUDA is
– a library enabling legacy applications to run on GPUs
– open source so anyone can join the fun
– evolving

• more features
• cleaner, easier to maintain

– a research tool into how to reach the exascale 
• Lessons learned are mostly (platform) agnostic
• Domain-specific knowledge is key
• Free from the restrictions of DSLs, e.g., multigrid in QDP 
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QUDA High-Level Interface

#include <quda.h>

int main() {

  // initialize the QUDA library
  initQuda(device);

  // load the gauge field
  loadGaugeQuda((void*)gauge, &gauge_param);

  // perform the linear solve
  invertQuda(spinorOut, spinorIn, &inv_param);

  // free the gauge field
  freeGaugeQuda();

  // finalize the QUDA library
  endQuda();

}

• QUDA default interface provides a simple 
view for the outside world

• C or Fortran

• Host applications simply pass cpu-side 
or gpu-side pointers (new!)

• QUDA takes care of all field reordering 
and data copying

• No GPU code in user application

• Limitation

• No control over memory management

• No external opaque gpu objects

• Considering different strawman 
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The Kepler Architecture
• Kepler K20X

– 2688 processing cores

– 3995 SP Gflops peak (665.5 fma)

– Effective SIMD width of 32 threads (warp)

• Deep memory hierarchy

– As we move away from registers

• Bandwidth decreases

• Latency increases

– Each level imposes a minimum arithmetic 
intensity to achieve peak

• Limited on-chip memory

– 65,536 32-bit registers, 255 registers per thread

– 48 KiB shared memory

– 1.5 MiB L2
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Mapping the Wilson Dslash to CUDA

• Assign a single space-time point to each thread
• V = XYZT threads

• V = 244 => 3.3x106 threads

• Fine-grained parallelization

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
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Mapping the Wilson Dslash to CUDA

• Assign a single space-time point to each thread
• V = XYZT threads

• V = 244 => 3.3x106 threads

• Fine-grained parallelization

• Looping over direction each thread must

• Load the neighboring spinor (24 numbers x8)

• Load the color matrix connecting the sites (18 numbers x8)

• Do the computation

• Save the result (24 numbers)

• Arithmetic intensity

• 1320 floating point operations per site

• 1440 bytes per site (single precision)

• 0.92 naive arithmetic intensity                                       

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
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Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.
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• SU(3) matrices are all unitary complex matrices with det = 1
• 12-number parameterization: reconstruct full matrix on the fly in registers

• Additional 384 flops per site

• Also have an 8-number parameterization (requires sin/cos and sqrt)

• Impose similarity transforms to increase sparsity

• Still memory bound - Can further reduce memory traffic by truncating the precision
• Use 16-bit fixed-point representation
• No loss in precision with mixed-precision solver
• Almost a free lunch (small increase in iteration count)

a1 a2 a3
b1 b2 b3
c1 c2 c3
( ) c = (axb)*

a1 a2 a3
b1 b2 b3( )

Reducing Memory Traffic
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Kepler Wilson-Dslash Performance
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Krylov Solver Implementation

• Complete solver must be on GPU

• Transfer b to GPU  (reorder)

• Solve Mx=b

• Transfer x to CPU  (reorder)

• Entire algorithms must run on GPUs

• Time-critical kernel is the stencil application (SpMV)

• Also require BLAS level-1 type operations

• e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

• Roll our own kernels for kernel fusion and custom precision

while (|rk|> ε) {
βk = (rk,rk)/(rk-1,rk-1)
pk+1 = rk - βkpk

α = (rk,rk)/(pk+1,Apk+1)
rk+1 = rk - αApk+1
xk+1 = xk + αpk+1
k = k+1

}

conjugate 
gradient
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Kepler Wilson-Solver Performance

K20X performance
V = 243xT
Wilson-Clover is ±10%
BiCGstab is -10%
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Multi-dimensional lattice decompositionMulti GPU Parallelization

face
exchange

wrap
around

face
exchange

wrap
around

Tuesday, July 12, 2011
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• Non-overlapping blocks - simply have to 
switch off inter-GPU communication

• Preconditioner is a gross approximation
– Use an iterative solver to solve 

each domain system
– Require only 10 iterations of 

domain solver  ⟹ 16-bit  
– Need to use a flexible solver ⟹  GCR

• Block-diagonal preconditoner impose λ cutoff
• Finer Blocks lose long-wavelength/low-energy modes

– keep wavelengths of ~ O(ΛQCD-1),   ΛQCD -1 ~ 1fm 

• Aniso clover:  (as=0.125fm, at=0.035fm)  ⟹   83x32 blocks are ideal
– 483x512 lattice: 83x32 blocks  ⟹   3456 GPUs

Domain Decomposition
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Results from TitanDev
- 483x512 aniso clover
- scaling up 768 GPUs

102 Tflops
  37 Tflops

  7.5 Tflops
  32 Tflops
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Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 

Chroma 
483x512 lattice 
Relative Scaling (Application Time)  

XK7 (K20X) (BiCGStab) 
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MILC on QUDA

• Gauge generation benchmark 256 BW nodes
• Volume = 243x64

• QUDA: solver, forces, fat link

• MILC: long link, outer product

• MILC is multi-process only
• 6x net gain in performance

• But potential >8x gain in performance

• Porting remaining functions (J. Foley)

• Long link next week

• Outer product after that 1.0(
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Future Directions
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GPUDirect

• GPUDirect RDMA will radically improve strong scaling
– Coming in soon in QUDA
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Future Directions

• LQCD coverage (avoiding Amdahl)
– Remaining force terms needed for gauge generation
– Contractions
– Eigenvector solvers (EigCG probably first)

• Performance
– Locality
– Learning from today’s lessons (software and hardware)

• Hierarchical Algorithm Toolbox
– Adaptive Multigrid
– Domain decomposition
– Mixed-precision solvers
– Provide an environment to experiment with optimal scalable solvers
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Conclusions

• Introduction to QUDA
• Optimal performance required domain-specific 

knowledge 
• Legacy Applications ready for accelerators
• Still lots of work to do 

– New developers welcome

• Lessons today are relevant for Exascale preparation

mclark at nvidia dot com

Friday, August 2, 13
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Preliminary, NVIDIA Confidential – not for distribution 

Chroma (Lattice QCD) –  
High Energy & Nuclear Physics 

Chroma 
243x128 lattice 
Relative Performance (Propagator) vs. E5-2687w 3.10 GHz Sandy Bridge 
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Future Directions - Communication

• Only scratched the surface of domain-
decomposition algorithms

– Disjoint additive
– Overlapping additive
– Alternating boundary conditions
– Random boundary conditions
– Multiplicative Schwarz
– Precision truncation
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Future Directions - Latency

• Global sums are bad
– Global synchronizations
– Performance fluctuations

• New algorithms are required
– S-step CG / BiCGstab, etc.
– E.g., Pipeline CG vs. Naive

• One-sided communication
– MPI-3 expands one-sided communications
– Cray Gemini has hardware support
– Asynchronous algorithms?

• Random Schwarz has exponential convergence
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Multi-dimensional 
Communications Pipeline











 





 

Figure 3: Gauge field layout in host and GPU mem-
ory. The gauge field consists of 18 floating point
numbers per site (when no reconstruction is em-
ployed) and is ordered on the GPU so as to en-
sure that memory accesses in both interior and
boundary-update kernels are coalesced to the extent
possible.

terior kernel so that it computes the full results for the in-
ner spinors and the partial results for spinors in the bound-
aries. The interior kernel computes any contributions to the
boundary spinors that does not involve with ghost spinors,
e.g. if a spinor is located only in the T+ boundary, the in-
terior kernel computes the space contribution for this spinor
as well as the negative T direction’s. The positive T direc-
tion’s contribution for this spinor, will be computed in the
exterior kernel for T dimension using the ghost spinor and
ghost gauge fields from the T+ neighbor. Since spinors in
the corners belong to multiple boundaries, For the interior
kernel and T exterior kernel, the 4-d to 1-d mapping strat-
egy is the same for the spinor and gauge field, with X being
the fastest changing index and T the slowest changing in-
dex, and all gauge field and spinor access are coalesced. The
use of memory padding avoids the GPU memory partition
camping problem [23] and further improves the performance.
However, in the X, Y, Z exterior kernels, the ghost spinor
and gauge field follows di�erent mapping scheme, but the
reading and writing of the destination spinors, which is lo-
cated in local spinor region, still follows the T slowest 4-D
to 1-D mapping scheme. Such di�erent data mapping makes
complete coalesced access impossible and one has to choose
one or another. We choose to compute our index using the
X, Y, Z slowest 4-D to 1-D mapping schedule with X-, Y-, Z-
exterior kernels to minimize the un-coalesced access penalty
since most of the data trafic comes from the gauge field and
source spinors. It is also clear from the above description
that because of the spinors in corners, the exterior kernels
has data dependency with each other and must be executed
in sequential order.

6.2.2 Computation, Communication and Streams
CUDA streams are extensively used to overlap computa-

tion with communication as well as overlapping the di�er-
ent type of communications. Two streams per dimension
are used, one for gathering and exchanging spinors in the
forward direction and the other in the backward direction.
One extra stream is used for interior and exterior kernels,
making the total CUDA streams number up to 9, as shown
in Fig. 4. The gather kernels for all directions are launched
in GPU at the beginning so that the communications in all
directions can start early. The interior kernel is executed
after all gather kernels finishes, overlapping completely with
the communications. We use di�erent streams for di�erent
dimensions so that the di�erent communication components
can overlap with each other, including the device to host cu-
daMemcpy, memcpy from pinned host memory to pagable
host memory, MPI send and receive, memcpy from pagable
memory to pinned memory and host to device memory copy.
While the interior kernel can be overlapped with communi-
cations, the exterior kernels have data dependency with the
ghost data, the interior kernel and other exterior kernels
therefore must be placed in the same stream and be syn-
chronized with the communication in the corresponding di-
mension.The accumulation of communication over multiple
dimensions is likely to exceed the interior kernel run time,
leading to the idle GPU (see Fig. 4), thus degrading the
overall dslash performance.







 

 








  



 





















Figure 4: Usage of CUDA streams in dslash compu-
tation, and multiple stages of communications. One
stream is used for interior and exterior kernels and
two streams per dimension are used for gather ker-
nels, PCIe data transfer, host memcpy and inter-
node communications

When communicating over multiple dimensions, the com-
munication cost dominates the computations and any reduc-
tion in the communication is likely to improve the perfor-
mance. The two host memcpy are required due to the fact
GPU pinned memory is not compatible with the MPI pinned
memory and the GPU direct technology [24] is not readily
available in the existing GPU cluster. We expect these extra
memcpys to be removed in the future when better support
from GPU and MPI venders are available. The recent avail-
able CUDA SDK 4.0 has an interesting GPU to GPU direct
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Hierarchical algorithms on heterogeneous architectures

Thousands of cores 
for parallel processing

Few Cores optimized 
for serial work

CPU 

GPU 
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Domain Decomposition

Solve for χl   l=k,k-1,...,0:

Compute correction for x:

(Re)Start Generate Subspace Update Solution

repeat for all k or 
until residuum drops Full precision restart

if not converged
Quantities with ^ are 
in reduced precision

normalize ẑk

Orthogonalize ẑ-s

Apply Preconditioner:
reduced precision inner solve

Reduced Precision 
M v
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Run-time autotuning

§ Motivation:
— Kernel performance (but not output) strongly dependent on launch 

parameters:
§ gridDim (trading off with work per thread), blockDim
§ blocks/SM (controlled by over-allocating shared memory)

§ Design objectives:
— Tune launch parameters for all performance-critical kernels at run-

time as needed (on first launch).
— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.
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Auto-tuned “warp-throttling”

§ Motivation: Increase reuse in limited L2 cache.
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Run-time autotuning: Implementation

§ Parameters stored in a global cache:
static	  std::map<TuneKey,	  TuneParam>	  tunecache;

§ TuneKey is a struct of strings specifying the kernel name, 
lattice volume, etc.

§ TuneParam is a struct specifying the tune blockDim, gridDim, 
etc.

§ Kernels get wrapped in a child class of Tunable (next slide)
§ tuneLaunch() searches the cache and tunes if not found:

TuneParam	  tuneLaunch(Tunable	  &tunable,	  QudaTune	  enabled,	  
QudaVerbosity	  verbosity);
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Run-time autotuning: Usage

§ Before:
myKernelWrapper(a,	  b,	  c);

§ After:
MyKernelWrapper	  *k	  =	  new	  MyKernelWrapper(a,	  b,	  c);
k-‐>apply();	  	  //	  <-‐-‐	  automatically	  tunes	  if	  necessary

§ Here MyKernelWrapper inherits from Tunable and optionally 
overloads various virtual member functions (next slide).

§ Wrapping related kernels in a class hierarchy is often useful 
anyway, independent of tuning.
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Virtual member functions of Tunable

§ Invoke the kernel (tuning if necessary):
— apply()

§ Save and restore state before/after tuning:
— preTune(), postTune()

§ Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam()  // simply calls the above by default

§ Performance reporting
— flops(), bytes(), perfString()

§ etc.
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Future Directions - Locality

• Where locality does not exist, let’s create it
– E.g., Multi-source solvers
– Staggered Dslash performance, K20X
– Transform a memory-bound 

into a cache-bound problem
– Entire solver will remain

bandwidth bound
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Future Directions - Precision

• Mixed-precision methods have become de facto
– Mixed-precision Krylov solvers
– Low-precision preconditioners

• Exploit closer coupling of precision and algorithm
– Domain decomposition, Adaptive Multigrid
– Hierarchical-precision algorithms
– 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit

•Low precision is lossy compression
• Low-precision tolerance is fault tolerance
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Adaptive Multigrid

Osborn et al, arXiv:1011.2775
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QUDA Low-Level Interface (in development)

• Possible strawman under consideration

• Here, src, sol, etc. are opaque objects that know about the GPU
• Allows the user to easily maintain data residency
• Users can easily provide their own kernels
• High-level interface becomes a compatibility layer built on top
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