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Outline

� Disconnected diagrams: the computational challenge
� Software details

– The Truncated Solver Method (TSM)
– The One-End Trick for twisted mass fermions
– Spin, color and time dilution
– The Hopping Parameter Expansion (HPE)
– Integration in QUDA

� Conclusions and future plans



CaSToRC

Disconnected diagrams: the computational
challenge

L (x) = Tr
[
ΓM−1 (x ; x)

]

� For the disconnected we need
the all-to-all propagators

– Must calculate inverse of the fermionic matrix
– Size N × N with N ∼ 106 − 108

� Stochastic techniques

M |sj〉 = |ηj〉

M−1
E := 1

N

∑N
j=1 |sj〉 〈ηj | ≈ M−1

� Error decresases as 1/
√
N
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Implementation of the different methods: The
TSM and the one-end trick

� The Truncated Solver Method Bali, Collins, Schäffer 2007

– We truncate the solver in M |sj〉 = |ηj〉
– Cheap and biased prediction
– We correct the bias stochastically

M−1
E :=

1

NHP

NHP∑
j=1

(
|sj〉 〈ηj |HP − |sj〉 〈ηj |LP

)
+

1

NLP

NHP+NLP∑
j=NHP+1

|sj〉 〈ηj |LP

– Efficiency depends on quark mass
� The One-End Trick Foster, Michael 1998; McNeile, Michael 2006

– For twisted mass fermions,∑
X
(
M−1

u −M−1
d

)
= −2iµ

∑
r

〈
s†γ5Xs

〉
r

– Also for the sum,
∑

X
(
M−1

u + M−1
d

)
= 2

∑
r

〈
s†γ5Xγ5DW s

〉
r
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Implementation of the different methods:
Dilution and HPE

� Regarding dilution, only time-dilution implemented so far
Bernardson et al. 1993

� Regarding the HPE: For twisted mass fermions, Foster, McNeile,

Michael 1999

M−1
u = B − BHB + (BH)2 B − (BH)3 B + (BH)4 M−1

u

B = (1 + i2κµaγ5)−1 H = 2κD

� Both methods can be combined without a noticeable
impact in performance (+0.15 s)
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Integration of TSM in QUDA

� GPU+QUDA are perfect candidates for evaluating TSM
inversions

– QUDA provides mixed precision solvers
– A single GPU in a HP double/single inversion ≈ 100GFlops
– A single GPU in a LP double/half inversion ≈ 180GFlops

� Most inversions are LP (24 HP vs 524 LP in our
computations)

� We implemented methods to perform HP and LP
inversions

� Unfeasible to store 500+ propagators, only store
contractions

� We developed a clever storage procedure for contractions



CaSToRC

Storage

� Naive contraction storing
– 160MB per source (text) × ≈500LP = 80GB per conf (323×64)

� Switch to binary
– Reduces storage requirements in 70%, not enough yet

� Power-of-two storing method
– Storing several contractions together in a power-of-two fashion

reduces the storage to a few hundred MB per conf
– Storage requirements decrease from N to log2 N

Prop.C001.Bin, Prop.C002.Bin, Prop.C004.Bin, Prop.C008.Bin, Prop.C016.Bin, Prop.C032.Bin. . .

� Immediate reconstruction
– 25 sources = Prop.C001.Bin + Prop.C008.Bin + Prop.C016.Bin
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Contractions in QUDA

� The contraction kernel is a big scalar product
� The GPUs are an excellent platform to perform

contractions
– A contraction involves O(V ) parallel products to be performed
– A single fermi GPU can handle thousands of parallel threads
– Each thread calculates the trace in color of each point
– Up to ≈ 300GFlops per GPU in double precision, peak

500GFlops (≈ 600GFlops in single precision, peak 1TFlop)
� Our output is the contraction per point

– Advantage: Direct transfer to cuFFT for Fourier transform
– Disadvantage: Large memory requirements

Time-dilution −→ OK
One-End trick −→ KO
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Contractions in QUDA

� The contraction kernels give results for a general Γ
structure

� Remember
Stochastic source→ |ηj〉, Inverted source→ |sj〉
M |sj〉 = |ηj〉

� Exterior product in Dirac space |sj〉 〈ηj |µν , |sj〉 〈sj |µν

µν = 03 →


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , µν = 12 →


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

µν = 21 →


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , µν = 30 →


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 . . .

� So we can reconstruct any general gamma structure
(scalar, vector and tensor operators)
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Integration of disconnected code in QUDA and
limitations

� We also developed a covariant derivative operator, to
allow for one-derivative insertions

– Unfortunately is not optimal yet, and contraction time raises to
several seconds

– Also, can’t calculate one-derivative insertions with time-dilution
� Our code is compatible with the multiGPU

implementation of QUDA through MPI
– But at this moment only splitting on the time direction is

supported
– QUDA suffers from a large performance impact when splitting

on X, Y or Z
– No QDP/QMP support included yet
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Integration of disconnected code in QUDA and
limitations

� We wrote interfaces for all these methods
– INPUT: Random source
– OUTPUT: Contraction for all momenta and a general Γ insertion

� CPU code to generate Z4 noise vectors with RANLUX
(gsl) is also included

� The Fourier Transform is performed on GPUs with
cuFFT

– FFT time negligible! The momenta we get is limited by storage
and IO time

– Supports multiGPU only when splitting on the T direction
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Integration of disconnected code in QUDA and
limitations

Invert and
contract

Generate Source

Accumulate FFT

Save to disk

GPU transfer

CPU transfer

GPU transfer

CPU transfer
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Integration of disconnected code in QUDA and
limitations

Invert and
contract

Generate Source

Accumulate FFT

Save to disk

GPU transfer

CPU transfer

GPU transfer

Bottleneck!

CPU transfer
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Solving bottlenecks

� GPUs rely on fast memory, memory transfers GPU/CPU
degrade performance

� Must reduce memory transfers to/from host as much as
possible!!

– Generate source on GPU
Piece of cake

– Accumulate on GPU
Ok with time-dilution

Ok with only local one-end trick
Memory constraints with one-derivative and one-end trick
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Solving bottlenecks

Invert and
contract

Generate
Source

Accumulate FFT

Save to disk

CPU transfer
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Conclusions

� Accelerators are suitable for computing disconnected
diagrams

� The use of GPUs displaces the main problem of
disconnected computation

– The stochastic nature of our estimation of the inverse is not the
main problem any more

� A library makes very easy the GPU implementation
� The disconnected diagrams are becoming accessible
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Future plans

� Implement source generation in GPUs by using cuRAND
� Optimize contractions and the covariant derivative

operator
� Solve bottleneck on storage/accumulation of contractions
� Allow splitting in the x, y, z direction
� Allow dilution in color/spin
� Allow any regularization supported in QUDA
� Allow QMP/QDP for multiGPU
� Look for integration with master branch
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Current branch

� The current branch of the disconnected package can be
found at

https://github.com/lattice/quda/tree/discLoop
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