
CaSToRC

A QUDA-branch to compute disconnected
diagrams in GPUs

Alejandro Vaquero

Computational-based Science and Technology Research Center (CaSToRC) at The Cyprus Institute

In collaboration with:

Constantia Alexandrou, CaSToRC and University of Cyprus
Giannis Koutsou, CaSToRC at The Cyprus Institute

Kyriacos Hadjiyiannakou, University of Cyprus

Alexei Strelchenko, Scientific Computing Division, FermiLab

August 2nd , 2013

CaSToRC

Outline

� Disconnected diagrams: the computational challenge
� Software details

– The Truncated Solver Method (TSM)
– The One-End Trick for twisted mass fermions
– Spin, color and time dilution
– The Hopping Parameter Expansion (HPE)
– Integration in QUDA

� Conclusions and future plans

CaSToRC

Disconnected diagrams: the computational
challenge

L (x) = Tr
[
ΓM−1 (x ; x)

]

� For the disconnected we need
the all-to-all propagators

– Must calculate inverse of the fermionic matrix
– Size N × N with N ∼ 106 − 108

� Stochastic techniques

M |sj〉 = |ηj〉

M−1
E := 1

N

∑N
j=1 |sj〉 〈ηj | ≈ M−1

� Error decresases as 1/
√
N

CaSToRC

Implementation of the different methods: The
TSM and the one-end trick

� The Truncated Solver Method Bali, Collins, Schäffer 2007

– We truncate the solver in M |sj〉 = |ηj〉
– Cheap and biased prediction
– We correct the bias stochastically

M−1
E :=

1

NHP

NHP∑
j=1

(
|sj〉 〈ηj |HP − |sj〉 〈ηj |LP

)
+

1

NLP

NHP+NLP∑
j=NHP+1

|sj〉 〈ηj |LP

– Efficiency depends on quark mass
� The One-End Trick Foster, Michael 1998; McNeile, Michael 2006

– For twisted mass fermions,∑
X
(
M−1

u −M−1
d

)
= −2iµ

∑
r

〈
s†γ5Xs

〉
r

– Also for the sum,
∑

X
(
M−1

u + M−1
d

)
= 2

∑
r

〈
s†γ5Xγ5DW s

〉
r

CaSToRC

Implementation of the different methods:
Dilution and HPE

� Regarding dilution, only time-dilution implemented so far
Bernardson et al. 1993

� Regarding the HPE: For twisted mass fermions, Foster, McNeile,

Michael 1999

M−1
u = B − BHB + (BH)2 B − (BH)3 B + (BH)4 M−1

u

B = (1 + i2κµaγ5)−1 H = 2κD

� Both methods can be combined without a noticeable
impact in performance (+0.15 s)

CaSToRC

Integration of TSM in QUDA

� GPU+QUDA are perfect candidates for evaluating TSM
inversions

– QUDA provides mixed precision solvers
– A single GPU in a HP double/single inversion ≈ 100GFlops
– A single GPU in a LP double/half inversion ≈ 180GFlops

� Most inversions are LP (24 HP vs 524 LP in our
computations)

� We implemented methods to perform HP and LP
inversions

� Unfeasible to store 500+ propagators, only store
contractions

� We developed a clever storage procedure for contractions

CaSToRC

Storage

� Naive contraction storing
– 160MB per source (text) × ≈500LP = 80GB per conf (323×64)

� Switch to binary
– Reduces storage requirements in 70%, not enough yet

� Power-of-two storing method
– Storing several contractions together in a power-of-two fashion

reduces the storage to a few hundred MB per conf
– Storage requirements decrease from N to log2 N

Prop.C001.Bin, Prop.C002.Bin, Prop.C004.Bin, Prop.C008.Bin, Prop.C016.Bin, Prop.C032.Bin. . .

� Immediate reconstruction
– 25 sources = Prop.C001.Bin + Prop.C008.Bin + Prop.C016.Bin

CaSToRC

Contractions in QUDA

� The contraction kernel is a big scalar product
� The GPUs are an excellent platform to perform

contractions
– A contraction involves O(V) parallel products to be performed
– A single fermi GPU can handle thousands of parallel threads
– Each thread calculates the trace in color of each point
– Up to ≈ 300GFlops per GPU in double precision, peak

500GFlops (≈ 600GFlops in single precision, peak 1TFlop)
� Our output is the contraction per point

– Advantage: Direct transfer to cuFFT for Fourier transform
– Disadvantage: Large memory requirements

Time-dilution −→ OK
One-End trick −→ KO

CaSToRC

Contractions in QUDA

� The contraction kernels give results for a general Γ
structure

� Remember
Stochastic source→ |ηj〉, Inverted source→ |sj〉
M |sj〉 = |ηj〉

� Exterior product in Dirac space |sj〉 〈ηj |µν , |sj〉 〈sj |µν

µν = 03 →


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , µν = 12 →


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,

µν = 21 →


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , µν = 30 →


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 . . .

� So we can reconstruct any general gamma structure
(scalar, vector and tensor operators)

CaSToRC

Integration of disconnected code in QUDA and
limitations

� We also developed a covariant derivative operator, to
allow for one-derivative insertions

– Unfortunately is not optimal yet, and contraction time raises to
several seconds

– Also, can’t calculate one-derivative insertions with time-dilution
� Our code is compatible with the multiGPU

implementation of QUDA through MPI
– But at this moment only splitting on the time direction is

supported
– QUDA suffers from a large performance impact when splitting

on X, Y or Z
– No QDP/QMP support included yet

CaSToRC

Integration of disconnected code in QUDA and
limitations

� We wrote interfaces for all these methods
– INPUT: Random source
– OUTPUT: Contraction for all momenta and a general Γ insertion

� CPU code to generate Z4 noise vectors with RANLUX
(gsl) is also included

� The Fourier Transform is performed on GPUs with
cuFFT

– FFT time negligible! The momenta we get is limited by storage
and IO time

– Supports multiGPU only when splitting on the T direction

CaSToRC

Integration of disconnected code in QUDA and
limitations

Invert and
contract

Generate Source

Accumulate FFT

Save to disk

GPU transfer

CPU transfer

GPU transfer

CPU transfer

CaSToRC

Integration of disconnected code in QUDA and
limitations

Invert and
contract

Generate Source

Accumulate FFT

Save to disk

GPU transfer

CPU transfer

GPU transfer

Bottleneck!

CPU transfer

CaSToRC

Solving bottlenecks

� GPUs rely on fast memory, memory transfers GPU/CPU
degrade performance

� Must reduce memory transfers to/from host as much as
possible!!

– Generate source on GPU
Piece of cake

– Accumulate on GPU
Ok with time-dilution

Ok with only local one-end trick
Memory constraints with one-derivative and one-end trick

CaSToRC

Solving bottlenecks

Invert and
contract

Generate
Source

Accumulate FFT

Save to disk

CPU transfer

CaSToRC

Conclusions

� Accelerators are suitable for computing disconnected
diagrams

� The use of GPUs displaces the main problem of
disconnected computation

– The stochastic nature of our estimation of the inverse is not the
main problem any more

� A library makes very easy the GPU implementation
� The disconnected diagrams are becoming accessible

CaSToRC

Future plans

� Implement source generation in GPUs by using cuRAND
� Optimize contractions and the covariant derivative

operator
� Solve bottleneck on storage/accumulation of contractions
� Allow splitting in the x, y, z direction
� Allow dilution in color/spin
� Allow any regularization supported in QUDA
� Allow QMP/QDP for multiGPU
� Look for integration with master branch

CaSToRC

Current branch

� The current branch of the disconnected package can be
found at

https://github.com/lattice/quda/tree/discLoop

CaSToRC

This presentation has been funded by the
Research Promotion Fundation under project

ΠPOΣEΛKYΣH/NEOΣ/0609/16

