# Chiral phase transition of $N_f=2+1$ QCD with the HISQ action

Heng-Tong Ding

#### Brookhaven National Lab & Columbia University

in collaboration with A. Bazavov, F. Karsch, Y. Maezawa, S. Mukherjee and P. Petreczky

Lattice conference at Mainz July 29, 2013

# QCD phase diagram at mu=0



 $\overleftrightarrow$  How large is the chiral phase transition T<sub>c</sub>?

😭 How large is the influence of scaling regimes to the physical world ?

# O(N) spin models and Nf=2 QCD

QCD at low energies can be described effectively by O(N) symmetric spin models

- $SU(2)_L \propto SU(2)_R$  is isomorphic to O(4)
- O(4) fields:  $\sigma = \bar{q}q$ ,  $\pi = \bar{q}\gamma_5 t^i q$ , and  $\eta = \bar{q}\gamma_5 q$ ,  $\delta = \bar{q}t^i q$
- external field H corresponds to quark mass m
- order parameter "magnetization"  $\Sigma = <\sigma >$

This description is valid both below and in the vicinity of the chiral phase transition region

#### chiral phase transition and universal scaling

Behavior of the free energy close to critical lines

 $f(m,T)=h^{1+1/\delta} f_s(z) + f_{reg}(m,T), \qquad z=t/h^{1/\beta\delta}$ 

h: external field, t: reduced temperature,  $\beta$ , $\delta$ : universal critical exponents  $f_s(z)$ : universal scaling function, O(N) etc. Magnetic Equation of State (MEoS):  $h = \frac{1}{h_0} \frac{m_l}{m_s}$   $t = \frac{1}{t_0} \frac{T-T_c}{T_c}$ 

 $M = -\partial f_s(t,h) / \partial h = h^{1/\delta} f_G(z)$ 



 $f_{\chi}(z) = h_0^{1/\delta} (m_l/m_s)^{1-1/\delta} \partial M/\partial h$ 





• the scaling window depends on discretization schemes: standard v.s. improved staggered fermions

• scaling violations seen at  $m_l/m_s > 1/10$  using p4 action on Nt=4 lattices

# Recent O(N) universal scaling studies



#### BNL-Bielefeld PRD '09

#### HotQCD, PRD '11

• Reasonably good prediction of chiral susceptibilities using parameters obtained from the scaling fit to chiral condensates

• Useful tool to determine the critical temperature, chiral curvature etc.

# Nf=2+IQCD



• The chiral first order phase transition region shrinks with better improved staggered fermions  $m_{\pi}^{c} \approx 290 \text{ MeV} \longrightarrow m_{\pi}^{c} \lesssim 45 \text{ MeV}$ HTD, xQCD 2012, arXiv:1302.5740

•  $\ge$  2nd order O(4) scaling regime may have more influence on the physical world ?

#### volume dependence at physical pion mass



- volume effects are small in 3 largest volume
- $m_{\pi}L > 4$  is ensured in the following other datasets 48<sup>3</sup>x6 with  $m_{\pi}$ =80 MeV, 40<sup>3</sup>x6 with  $m_{\pi}$ =90 MeV, 32<sup>3</sup>x6 with  $m_{\pi}$ =110 MeV, 24<sup>3</sup>x6 with  $m_{\pi}$ =160 MeV

#### volume dependence at $m_{\pi}$ =80 MeV



- Mild volume dependence is seen from chiral condensates
- No evidence of linear volume scaling as signatures of first order phase transition
- Volume scaling analysis needs to understand the volume effects

#### chiral condensates & susceptibilities



 chiral condensates decrease with increasing temperature and decreasing quark mass

• peak heights of chiral susceptibilities increase and peak locations shift to lower temperatures with decreasing quark mass

### O(N) scaling behavior

For large negative values of z







 $f_G(z) \simeq f_G^{-\infty(z)} = (-z)^{\beta} \left( 1 + c_2 \,\beta \, (-z)^{-\beta \delta/2} \right)$  Engels et al., PLB 514(2001)299

$$M = h^{1/\delta} f_G(z) \simeq h^{1/\delta} f_G^{-\infty(z)} = (-t)^{\beta} \left( 1 + c_2 \beta (-t)^{-\beta \delta/2} \sqrt{h} \right)$$

contribution of Goldstone modes to the order parameter M is enclosed in the scaling function in the low temperature susceptibility of the order parameter  $\sim 1/sqrt(h)$ 

For large positive values of z

 $f_G(z) \sim R_{\gamma} z^{-\beta(\delta-1)}$ Engels et al., NPB 675(2003)533

$$M = h^{1/\delta} f_G(z) \sim R_\chi t^{-\beta(\delta-1)} h$$

susceptibility of the order parameter is independent of h

#### disconnected chiral sus. at low and high temperatures



•At very low temperature, the disconnected susceptibilities scale as square root of quark mass

•At T~170 MeV, the disconnected susceptibilities seem to be independent on quark mass: a likely indication of  $U(1)_A$  symmetry breaking

Chris Schroeder's talk on  $U(1)_A$  from DWF, 15:30 today

#### scaling and scaling violation of the chiral condensate $M = -\partial f_s(t,h)/\partial h = h^{1/\delta} f_G(z)$



•The right plot is generated using the fitting parameters obtained from the fit to the two lightest quark mass shown in the left plot

• scaling violation of chiral condensates seen with  $m_{\pi} \ge 110$  MeV (m<sub>1</sub>/m<sub>s</sub>  $\ge 1/40$ ) using the HISQ action on Nt=6 lattices

#### scaling and scaling violation of the chiral condensate $M = -\partial f_s(t,h)/\partial h = h^{1/\delta} f_G(z)$



Navigation:  $m_{\pi}$ =160 MeV ~  $m_l/m_s$ =1/20,  $m_{\pi}$ =80 MeV ~  $m_l/m_s$ =1/80

- scaling violation of chiral condensates seen with  $m_{\pi} \ge 110$  MeV (m<sub>I</sub>/m<sub>s</sub>  $\ge 1/40$ ) using the HISQ action on Nt=6 lattices
- the scaling window shrinks compared to the results obtained using the p4 action on Nt=4 lattices

#### fit to chiral condensates and resulting sus.



 $\bullet$  After including the regular terms, the chiral condensates can be described by the O(2) scaling function  $f_G(z)$ 

• The susceptibilities can be reasonably reproduced using the fitting parameters obtained from the fit to the chiral condensate

### Summary

• We study the chiral observables on Nt=6 lattices using the HISQ action with  $m_{\pi}$  =160,140,110,90 and 80 MeV

•No direct evidence of a first order phase transition in current pion mass window is found

• The scaling window shrinks in the HISQ results compared to that in the p4 results

• Regular terms need to be included to extract information on the singular structure