





# Continuum EoS for QCD with $N_f = 2+1$ flavors

In collaboration with: S. Borsanyi, Z. Fodor, S.D. Katz, K.K. Szabo (Wuppertal-Budapest collaboration)

28.11.2012 | Stefan Krieg





## Outline

- Motivation
- Simulation
  - Ensembles/statistics
  - Scale setting (LCP)
  - T/2 subtraction
  - Systematics: finite vol., lattice spacing, histogram method
- Results
  - Trace Anomaly, comparison with literature
  - Pressure, entropy, energy density, speed of sound
- Conclusions





#### **Motivation: status 2012**



Lattice 2013 – Stefan Krieg





## **Simulation: ensembles/statistics**







## Simulation: scale setting







## **Simulation: T/2 subtraction**

- Reaching large temperatures requires small lattice spacings
- Algorithmically T=0 runs have difficulties to reach a<0.05 fm (frozen topology, diverging autocorrelation times).
- Solution: T/2 subtraction:

$$I_{sub}(T) = (I(T) - I(T/2))_{\beta(a_0)} + (I(T/2) - I('T=0'))_{\beta(2a_0)}$$

- Requires new simulations, however these are still in the high-temperature phase (Nt=8  $\rightarrow$  Nt=16, ...)





## **Systematics**

- Finite volume effects
  - Studied explicitly in 2010 (see also Lattice 2011):
    - no effects (larger that statistical errors) seen.
  - This study includes larger volumes
  - → Finite volume effects will be negligible compared to other systematic uncertainties
- Scale setting and lattice spacing artifacts
  - We vary the range of lattice spacings in our fits:
    - N<sub>t</sub>=6 is included or left out
  - We use different scale settings
  - We include O(a<sup>4</sup>) in our fit procedure





## Simulation: systematics, histogram method

- vacuum fits
  - 7 different fit models (incl. direct subtr. w. interp.)
- continuum extrapolation
  - Vary node points (8 different sets)
  - Include or leave out leave N<sub>t</sub>=6
  - With or without improvement factors
  - We use two different scale settings ( $f_k$  vs.  $w_0$ )
  - Fit includes a<sup>2</sup> or a<sup>2</sup> and a<sup>4</sup> terms
- → This results in  $7 \times 8 \times 2 \times 2 \times 2 = 896$  different fits
  - Weighting: we consider AICc, Q, or unweighted histograms





#### **Results: trace anomaly**







### **Results: trace anomaly @ 215 MeV**







#### **Results: pressure**







#### **Results: pressure @ 215 MeV**







#### **Results: pressure @ 215 MeV**







#### **Results: entropy et al.**







#### **Results: trace anomaly**







## Conclusions

- We have performed a continuum extrapolation of the EoS for  $N_f=2+1$  QCD
- We carefully studied and included systematic uncertainties
- Within our error the discrepancy to the hotQCD/HISQ results remains
- Final conclusion requires continuum extrapolation of HISQ data combined with a study of systematic uncertainties.
- In any case above T~300 MeV charm effects become important.





## Thank You for Your attention!





## **Simulation: ensembles/statistics**

- Vacuum (T=0) runs:
  - Renormalization (& w<sub>0</sub> scale setting):
    - Volumes: 32<sup>4</sup>, 48<sup>4</sup>, 64<sup>4</sup>
    - #traj.: O(10<sup>4</sup>) for 32<sup>4</sup>
      O(10<sup>5</sup>) for 48<sup>4</sup>
      O(10<sup>3</sup>) for 64<sup>4</sup>
  - Scale setting (f<sub>k</sub>):
    - Volumes: 32<sup>3</sup>×64, 40<sup>3</sup>×64, 48<sup>3</sup>×64
    - #traj.: O(10<sup>4</sup>) for 32<sup>3</sup>×64,
      O(10<sup>3</sup>) for 40<sup>3</sup>×64 and 48<sup>3</sup>×64





## **Simulation: ensembles/statistics**

- Used available ensembles (see *e.g.* 1305.5161)
- Added ensembles:
  - $32^3 \times 6$ ,  $32^3 \times 8$ , with  $13-50 \times 10^3$  trajectories
- Use sufficently large volumes only
  - L>2 fm for all T
  - L>5.3 (12); 4.2 (10); 5.2 (8) @ 150 MeV
    - 48<sup>3</sup>×8
    - $64^3 \times 10^{-1}$  @ O(10<sup>4</sup>) trajectories each
    - 64<sup>3</sup>×12
- Additional  $48^3 \times 16$ ,  $64^3 \times 20$ ,  $64^3 \times 24$  ensembles (T/2 subtraction, 215 MeV point)

29. July 2013

mholtz-Gemeinschaft

Mitglied der Hel





## **Results: entropy @ 215 MeV**

