On a development of the phenomenological renormalization group

O. Borisenko, V. Chelnokov, V. Kushnir

Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

Lattice 2013, Mainz, Germany

OUTLINE

- 1. Renormalization group in spin and gauge models
- 2. Combining phenomenological RG and CDA
- 3. Application to Z(N) models
- 4. Summary and perspectives

I. RG in spin and gauge models

Gauge and spin models on d-dimensional lattice $\Lambda_0 = L^d$ are defined as

$$Z(\Lambda_0, \{t_k\}) = \int \prod_l dU_l \prod_p Q_0(\operatorname{Tr} U_p, \{t_k\}),$$

$$Z(\Lambda_0, \{t_k\}) = \int \prod_x dV_x \prod_l Q_0(\operatorname{Tr} V_l, \{t_k\}),$$

where $U_l, V_x \in Z(N), O(N), SU(N), U(N)$ and $U_p = \prod_{l \in p} U_l$, $V_l = V_x V_{x+e_n}^{\dagger}$. The most general form of the Boltzmann weight

$$Q(\mathsf{Tr}U, \{t_k\}) = \sum_{\{r\}} t_r \, \chi_r(U) \, , \, t_0 = 1 \, , \, 0 \le t_r \le 1$$

Write partition function on a decimated lattice Λ_1 ($L = bL_1$, b = 2)

$$Z(\Lambda_0, \{t_k\}) = A(\{t_k\}) Z(\Lambda_1, \{t_k^{(1)}\})$$

with unchanged Boltzmann weight and a new set of couplings $\{t_k^{(1)}\}$. Most real-space RGs on the lattice amount to a prescription of how to (approximately) compute constant $A(\{t_k\})$ and new couplings $\{t_k^{(1)}\}$.

- Migdal-Kadanoff: new coupling from bond moving operation
- Cluster decimation approximation (CDA): new coupling from small clusters
- Phenomenological RG: uses finite-size scaling

→ R. E. Goldstein, J. S. Walker, J. Phys A: Math. Gen. 18 (1985) 1275

 $Z(L,K) \approx Z(L/2,K_1)$.

New set of couplings K_1 can be computed from the CDA.

CDA for 2×2 lattice with the periodic boundary conditions.

$$Z(2,K) = Z(1,\tilde{K}).$$

For 2*D* Ising model: $K_c = 0.492$, $\nu = 1.1919$

Phenomenological RG

→ *M.P. Nightingale, Physica* **83A** (1976) 561.

In the vicinity of a critical point $bm(L) \approx m(L/b)$. Phenomenological RG is designed to determine critical points and indices from this finite-size relation. Usually, one considers a system on a strip $M \times \infty$ (in 2d). If $\lambda_i(M)$ are eigenvalues of a corresponding transfer matrix then

$$\left(\frac{\lambda_1(M)}{\lambda_0(M)}\right)^2 = \frac{\lambda_1(M/2)}{\lambda_0(M/2)}.$$

• Results for 2*d* Ising model

Μ	eta_c	u
2	0.435665	0.9873
8	0.43833	0.9768
16	0.440439	0.9948
32	0.440657	0.9988
64	0.440683	0.9997
Exact	0.440687	1

II. Combining phenomenological RG and CDA

- $bm(L) \approx m(L/b)$ is treated as equation for new coupling
- CDA: as a cluster we consider lattice strip $M^{(d-1)} \times L, L \to \infty$

Suppose that correlation function has the following general form $\Gamma_r(M, \{t_k\}; R) = D_r(M, \{t_k\}, R) [B_r(M, \{t_k\})]^R$. The function $B_r(M, \{t_k\})$ encodes an exponential decay

$$B_r(M, \{t_k\}) = \frac{\lambda_r(M, \{t_k\})}{\lambda_0(M, \{t_k\})}$$

of $\Gamma_r(M, \{t_k\}; R)$ in representation r.

Basic idea is to present the original correlation function via the correlation function $\Gamma_r(M/2, \{t_k^{(1)}\}; R/2)$, calculated on the strip of the width M/2 with new couplings $\{t_k^{(1)}\}$, in the form

$$\Gamma_r(M, \{t_k\}; R) = \frac{D_r(M, \{t_k\}, R)}{D_r(M/2, \{t_k^{(1)}\}, R/2)} \Gamma_r(M/2, \{t_k^{(1)}\}; R/2) .$$

Last equation holds if

$$B_r^2(M, \{t_k\}) = B_r(M/2, \{t_k^{(1)}\})$$

for all r. This system determines new couplings $t_k^{(1)}$ on the lattice strip (M/2, L/2). Via CDA these exact relations are used to approximate the partition and the correlation functions on Λ_0 as

$$Z(\Lambda_0, \{t_k\}) = \left[\frac{\lambda_0(M, \{t_k\})}{\lambda_0^{(1/2)}(M/2, \{t_k^{(1)}\})}\right]^{L^2/M} Z(\Lambda_1, \{t_k^{(1)}\}),$$

$$\Gamma_r(\Lambda_0, \{t_k\}; R) = \frac{D_r(M, \{t_k\}, R)}{D_r(M/2, \{t_k^{(1)}\}, R/2)} \Gamma_r(\Lambda_1, \{t_k^{(1)}\}; R/2).$$

III. Application to Z(N) models

- $B_r(M, \{t_k\})$ is calculated with transfer matrix technics
- Transfer matrix is constructed from evolution of independent couplings
- Dual formulation is used

Exact solution for the free energy of 2d standard Potts models on lattice strips M = 2, 3, 4 and zero magnetic field h = 0.
→ J. Salas, S.-C. Chang, R. Shrock, J. Stat. Phys. 107 (2002) 1207 This has been extended to:

- Two-point correlation function and second moment correlation length
- Non zero external field
- some vector models Z(N = 4, 5, 6) with arbitrary couplings

Standard Potts models, M=2

$\mid N \mid$	eta_c	u	y_h
2	0.435657	0.987303	1.788717
	0.440687	1	1.875
3	0.655143	0.874834	1.749592
	0.670035	0.833333	1.866667
4	0.799504	0.807699	1.717679
	0.823959	0.666666	1.875
5	0.906325	-	-
	0.939487	-	-

Standard Potts models, M=L

RG based on a preservation of the second moment correlation length

Ν	L	eta_c	$\beta_{c(e)}$	u	$\nu_{(e)}$
2	16	0.441905		1.04733	
	32	0.440965		1.01295	
	64	0.440664	0.440687	0.998986	1.0
3	8	0.33703		0.971028	
	16	0.33531		0.887692	
	32	0.33505		0.857852	
	64	0.3350186	0.335018	0.849067	5/6
5	16	0.234663		-	-
	32	0.234726		-	-
	64	0.2348156	0.234872	-	-
13	8	0.1165		-	-
	16	0.117		-	-
	32	0.1175	0.117482	-	-

Critical coupling β_c and critical exponent ν for Z(N), N = 2, 3, 5, 13

Free energy of the Ising model in the vicinity of the critical point. RG $M = 16 \rightarrow 8$. Dashed line - one iteration. Blue line - 5 iterations. Red line - exact.

Ashkin-Teller model, N=4

Contour plot of the fixed points after 1-st and 2-nd iterations. Shown are line of the standard Potts model ($t_1 = t_2$) and self-dual line.

Three-dimensional spin vector Z(N) models

RG: $2 \times 2 \times L \rightarrow 1 \times 1 \times L/2$

$\mid N \mid$	β_c	ν
2	0.2146	0.6167
	0.22171	0.63
3	0.3237	-
	0.367	-
4	0.4292	0.6167
	0.44342	0.63

3D Z(4) model with arbitrary couplings

Contour plot for fixed points after 3 iterations. Yellow line corresponds to a vector Z(4) model $t_2 = t_1^2$

Three-dimensional gauge vector Z(N) models at zero temperature (also talk by V. Chelnokov, Theor. Devel., Friday) RG: $2 \times 2 \times L \rightarrow 1 \times 1 \times L/2$

$\mid N \mid$	β_c
2	0.777
	0.7614
3	1.172
	1.084
4	1.554
	1.523
5	2.17894
	2.1796

V. Summary and perspectives

- Phenomenological RG in combination with CDA
- Some new exact results for the free energy (including non-zero external field) and correlation function for Z(N) models on small strips in 2d and 3d
- Application to models with discrete symmetries
- Models with continuous symmetry: XY, principal chiral models, O(N) non-linear sigma-models.
- Extension to gauge models