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I. RG in spin and gauge models

Gauge and spin models on d-dimensional lattice Λ0 = Ld are defined as

Z(Λ0, {tk}) =
∫ ∏

l

dUl
∏
p
Q0(TrUp, {tk}) ,

Z(Λ0, {tk}) =
∫ ∏

x
dVx

∏
l

Q0(TrVl, {tk}) ,

where Ul, Vx ∈ Z(N), O(N), SU(N), U(N) and Up =
∏
l∈pUl,

Vl = VxV
†
x+en

. The most general form of the Boltzmann weight

Q(TrU, {tk}) =
∑
{r}

tr χr(U) , t0 = 1 , 0 ≤ tr ≤ 1



Write partition function on a decimated lattice Λ1 (L = bL1, b = 2)

Z(Λ0, {tk}) = A({tk}) Z(Λ1, {t
(1)
k })

with unchanged Boltzmann weight and a new set of couplings {t(1)
k }. Most

real-space RGs on the lattice amount to a prescription of how to (approxi-
mately) compute constant A({tk}) and new couplings {t(1)

k }.

• Migdal-Kadanoff: new coupling from bond moving operation

• Cluster decimation approximation (CDA): new coupling from small clus-
ters

• Phenomenological RG: uses finite-size scaling



CDA

Ü R. E. Goldstein, J. S. Walker, J. Phys A: Math. Gen. 18 (1985) 1275

Z(L,K) ≈ Z(L/2,K1) .

New set of couplings K1 can be computed from the CDA.

CDA for 2× 2 lattice with the periodic boundary conditions.

Z(2,K) = Z(1, K̃) .

For 2D Ising model: Kc = 0.492, ν = 1.1919



Phenomenological RG

Ü M.P. Nightingale, Physica 83A (1976) 561.

In the vicinity of a critical point bm(L) ≈ m(L/b). Phenomenological RG
is designed to determine critical points and indices from this finite-size
relation. Usually, one considers a system on a strip M ×∞ (in 2d). If

λi(M) are eigenvalues of a corresponding transfer matrix then(
λ1(M)

λ0(M)

)2

=
λ1(M/2)

λ0(M/2)
.

• Results for 2d Ising model
M βc ν

2 0.435665 0.9873
8 0.43833 0.9768
16 0.440439 0.9948
32 0.440657 0.9988
64 0.440683 0.9997
Exact 0.440687 1



II. Combining phenomenological RG and CDA

• bm(L) ≈ m(L/b) is treated as equation for new coupling

• CDA: as a cluster we consider lattice strip M(d−1) × L, L→∞

Suppose that correlation function has the following general form

Γr(M, {tk};R) = Dr(M, {tk}, R) [Br(M, {tk})]R .

The function Br(M, {tk}) encodes an exponential decay

Br(M, {tk}) =
λr(M, {tk})
λ0(M, {tk})

of Γr(M, {tk};R) in representation r.



Basic idea is to present the original correlation function via the correlation
function Γr(M/2, {t(1)

k };R/2), calculated on the strip of the width M/2

with new couplings {t(1)
k }, in the form

Γr(M, {tk};R) =
Dr(M, {tk}, R)

Dr(M/2, {t(1)
k }, R/2)

Γr(M/2, {t(1)
k };R/2) .

Last equation holds if

B2
r (M, {tk}) = Br(M/2, {t(1)

k })

for all r. This system determines new couplings t(1)
k on the lattice strip

(M/2, L/2). Via CDA these exact relations are used to approximate the
partition and the correlation functions on Λ0 as

Z(Λ0, {tk}) =

 λ0(M, {tk})

λ
(1/2)
0 (M/2, {t(1)

k })

L2/M

Z(Λ1, {t
(1)
k }) ,

Γr(Λ0, {tk};R) =
Dr(M, {tk}, R)

Dr(M/2, {t(1)
k }, R/2)

Γr(Λ1, {t
(1)
k };R/2) .



III. Application to Z(N) models

• Br(M, {tk}) is calculated with transfer matrix technics

• Transfer matrix is constructed from evolution of independent couplings

• Dual formulation is used

Exact solution for the free energy of 2d standard Potts models on lattice
strips M = 2,3,4 and zero magnetic field h = 0.

Ü J. Salas, S.-C. Chang, R. Shrock, J. Stat. Phys. 107 (2002) 1207

This has been extended to:

• Two-point correlation function and second moment correlation length

• Non zero external field

• some vector models Z(N = 4,5,6) with arbitrary couplings



Standard Potts models, M=2

N βc ν yh
2 0.435657 0.987303 1.788717

0.440687 1 1.875
3 0.655143 0.874834 1.749592

0.670035 0.833333 1.866667
4 0.799504 0.807699 1.717679

0.823959 0.666666 1.875
5 0.906325 - -

0.939487 - -



Standard Potts models, M=L

RG based on a preservation of the second moment correlation length
N L βc βc(e) ν ν(e)

2 16 0.441905 1.04733
32 0.440965 1.01295
64 0.440664 0.440687 0.998986 1.0

3 8 0.33703 0.971028
16 0.33531 0.887692
32 0.33505 0.857852
64 0.3350186 0.335018 0.849067 5/6

5 16 0.234663 - -
32 0.234726 - -
64 0.2348156 0.234872 - -

13 8 0.1165 - -
16 0.117 - -
32 0.1175 0.117482 - -

Critical coupling βc and critical exponent ν for Z(N), N = 2,3,5,13



Free enrgy

F =
2 cosh(β)

M

∑
i∈Iter

1

4i+1
log

λ0({ti},M)√
λ0({ti+1},M/2)

.

Free energy of the Ising model in the vicinity of the critical point. RG
M = 16→ 8. Dashed line - one iteration. Blue line - 5 iterations. Red

line - exact.





Three-dimensional spin vector Z(N) models

RG: 2× 2× L→ 1× 1× L/2

N βc ν
2 0.2146 0.6167

0.22171 0.63
3 0.3237 -

0.367 -
4 0.4292 0.6167

0.44342 0.63



3D Z(4) model with arbitrary couplings
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Contour plot for fixed points after 3 iterations. Yellow line corresponds to a
vector Z(4) model t2 = t21



Three-dimensional gauge vector Z(N) models at zero temperature
(also talk by V. Chelnokov, Theor. Devel., Friday)

RG: 2× 2× L→ 1× 1× L/2

N βc
2 0.777

0.7614
3 1.172

1.084
4 1.554

1.523
5 2.17894

2.1796



V. Summary and perspectives

• Phenomenological RG in combination with CDA

• Some new exact results for the free energy (including non-zero exter-
nal field) and correlation function for Z(N) models on small strips in
2d and 3d

• Application to models with discrete symmetries

• Models with continuous symmetry: XY , principal chiral models,O(N)

non-linear sigma-models.

• Extension to gauge models


