On the N_f -dependence of gluonic observables

Mattia Bruno ALPHA Collaboration

NIC, DESY Zeuthen

Lattice 2013 - Mainz

July 29, 2013

Quality of $N_f = 2$ ensembles			nsembles To	pology	t_0 in $N_f = 2$ simulations		N _f investig	gation Conclusio	ns
CLS Ensembles									
-	β	ID	m_{π} [MeV]	MDU	$\mathrm{stat}/\tau_{\mathrm{exp}}$	$m_{\pi}L$	-		
	5.2	A2	630	8000	121	7.7			
		A3	490	8032	121	6.0			
		A4	380	8096	122	4.6		_	
		A5	330	4004	163	4.0	0.4	•	-
		B6	280	1272	52	5.1	$\geq_{0.3}$	•	_
	5.3	E4	580	2784	10	6.1	Ge	•	
		E5f	430	16000	60	4.6	0.2	• 🔹	-
		E5g	430	16000	120	4.6	m		
		F6	310	4800	36	4.9	0.1		
		F7	260	9616	72	4.2	0 4	•	
		G8	190	1114	23	4.0	0 0.00	$a^{1} 0.002 0.003 0.004 0.005 0.00$ $a^{2} [fm^{2}]$	5
	5.5	N4	550	6552	7	6.5			
		N5	440	6208	7	5.2			
		N6	340	8040	40	4.0			
		07	260	3920	20	4.2			

Definition of t_0 : $t_0^2 \langle E(t_0) \rangle = 0.3$, Wilson flow [Lüscher, '10]

Mattia Bruno

Both in Q^2 and t_0 : tail contribution to τ_{int} is at most $\approx 30\%$

Mattia Bruno

Normalized autocorrelation ρ of t₀

 au_{int} reduced by factor pprox 2

- Defining $h = max s_p$, with s_p value of plaquette p at t_0
- configurations "between the sectors" characterized by h > 0.067 [Lüscher, '10]
- occur less when reducing *a* or m_{π} :

< ロ > < 同 > < 回 > < 回 >

Lattice 2013, Mainz

•
$$T_0(\beta, am_{12}) = A(\beta)(1+By) \rightarrow \left(\frac{t_0}{a^2}\right)^{chiral} \equiv T_0(\beta, 0) = A(\beta)$$

• Does B depend on a: B(a) = B + O(a)?

Symanzik effective theory $ightarrow \widetilde{g}_0 = g_0(1+b_g a m_q)$

- $b_g = (0.012 \times N_f)g_0^2 + O(g_0^4)$ in PT
- we used $b_g = 0$ because of the smallness of 1-loop effects and it is confirmed to be ok non-perturbatively

We checked the extrapolations are stable by:

• cutting the pion mass $m_{\pi} < \text{cut}$

cut/MeV	У _{cut}		
520	0.14		
400	0.08		
330	0.06		

- cutting the pion mass $m_{\pi} > 190 \text{ MeV}$
- adding higher terms
 (e.g. O(y²))

Input:

э

< ∃ →

- small discretisation effects
- more precise extrapolations w.r.t. $r_0 f_{\pi}$
- see S. Lottini's talk

Lattice 2013, Mainz

- $N_f = 0$ Lüscher, '10
- $N_f = 2 + 1$

Quantity [fm]	ref.
$ \begin{array}{l} r_0 = 0.480(10)(4) \\ \sqrt{t_0} = 0.1465(21)(13) \\ w_0 = 0.1755(18)(4) \end{array} $	RBC, '12 BMW, '12 BMW, '12

• $N_f = 2 + 1 + 1$						
Quantity	ref.					
$r_0/r_1 = 1.508$ $\sqrt{t_0}/w_0 = 0.835(8)$ $r_1/w_0 = 1.790(25)$	HotQCD, '11 HPQCD, '13 HPQCD, '13					

Simulations with $19 < stat/\tau_{exp} < 165$:

- autocorrelations effects just under control
- open bc help even at largest lattice spacing
- ▶ weak quark mass dependence of *t*₀, and *r*₀

$$B_{t_0} = -0.96(5), \quad B_{r_0} = -0.7(2)$$

• weaker quark mass dependence of t_0/r_0^2

$$B_{t_0/r_0^2} = 0.22(16)$$

- dynamical fermion suppression of topology clearly seen
- ... but still a long way to quantitative understanding of topology