Computation of the strong coupling in $N_f = 4 \text{ QCD}$

Marina Marinković

Southampton

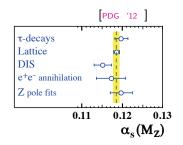
In collaboration with: R. Sommer (DESY Zeuthen),

U. Wolff (HU Berlin)

Marina Marinkovic

Motivation

- Error coming from the theory is dominating
- Lattice QCD: *ab initio* determination of QCD parameters
- Full control over systematics
 - non-perturbative renormalization
 - chiral extrapolation
 - continuum extrapolation



N_{f}	$\Lambda_{\overline{\rm MS}}$	Theory	
0	238(19)	LGT, ALPHA [Della Morte'05]	
2	310(20)	LGT, ALPHA [Fritzsch'12]	
5	160(11)	NNLO PT, fits to PDFs [Alekhin'12]	
5	198(16)	NNLO PT, fits to PDFs [Martin'09]	
5	275(57)	4-loop PT at M_Z	

Strategy for the computation of $\Lambda_{\overline{MS}}^{(5)}$ in physical units

$$\frac{\Lambda_{\frac{MS}{MS}}^{(5)}}{f_{K}} = \frac{1}{f_{K}L_{\max}} \times \frac{L_{\max}}{L_{k}} \Lambda_{SF}^{(4)}L_{k} \times \frac{\Lambda_{\frac{MS}{MS}}^{(4)}}{\Lambda_{SF}^{(4)}} \times \frac{\Lambda_{\frac{MS}{MS}}^{(5)}}{\Lambda_{\frac{MS}{MS}}^{(4)}}$$

- Scale setting: chiral and continuum extrapolation needed
- Intermediate scheme: connecting low and high energies 1-loop PT $\Lambda^{(4)}_{\overline{\rm MS}}/\Lambda^{(4)}_{SF}=2.9065~{\rm [Sint'96, Sommer'11]}$
- Decoupling across the b-threshold [Chetyrkin'00]

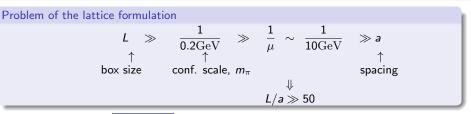
Strategy for the computation of $\Lambda_{\overline{MS}}^{(5)}$ in physical units

$$\frac{\Lambda_{\overline{MS}}^{(5)}}{f_{\mathrm{K}}} = \frac{1}{f_{\mathrm{K}}L_{\mathrm{max}}} \times \boxed{\frac{L_{\mathrm{max}}}{L_{k}}\Lambda_{SF}^{(4)}L_{k} \times \frac{\Lambda_{\overline{MS}}^{(4)}}{\Lambda_{SF}^{(4)}}} \times \frac{\Lambda_{\overline{MS}}^{(5)}}{\Lambda_{\overline{MS}}^{(4)}}$$

- Scale setting: chiral and continuum extrapolation needed
- Intermediate scheme: connecting low and high energies 1-loop PT $\Lambda_{SF}^{(4)}/\Lambda_{SF}^{(4)} = 2.9065$ [Sint'96, Sommer'11]
- Decoupling across the b-threshold [Chetyrkin'00]

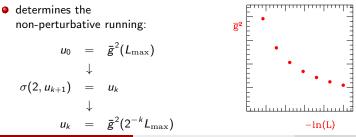
The step scaling function (SSF)

$$\sigma(s,\bar{g}^2(L))$$



• ALPHA Solution: $L = 1/\mu$ finite size scaling [Lüscher, Weisz, Wolff 1991]

• Integrated *beta* function - step scaling function $\sigma(s, u) = \bar{g}^2(sL)$, with $u = \bar{g}^2(L)$ [s=2]

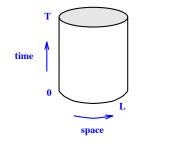


Marina Marinkovic

Schrödinger Functional

 $\mu = 1/L$

ALPHA 1991 - 2001



[Lüscher, Narayanan, Weisz, Wolff 1992]

$$e^{-\Gamma} = \int \mathcal{D}U\mathcal{D}\overline{\psi}\psi e^{\left\{-S[U,\overline{\psi},\psi]\right\}}$$
$$U(x,k)|_{x_0=0} = \exp\{aC_k(\eta)\},$$
$$U(x,k)|_{x_0=\mathcal{T}} = \exp\{aC'_k(\eta)\}$$

$$\Gamma' = \left. \frac{\partial \Gamma}{\partial \eta} \right|_{\eta=0} = \frac{k}{\bar{g}^2(L)} \propto \langle F_{0k}^8 \Big|_{\mathrm{boundary}}
angle$$

Advantages of SF approach:

- Infrared safe: one can simulate massless quarks $(\lambda^2_{min}(\gamma_5 D) \approx 1/L^2)$
- improvement coefficients can be computed non-perturbatively
- $\frac{\partial\Gamma}{\partial\eta}$ easily computed in Monte Carlo simulations $\langle \mathrm{d}S/\mathrm{d}\eta \rangle$

The lattice step scaling function

On the lattice:

additional dependence on the resolution a/L

 \rightarrow g₀ fixed, L/a doubled:

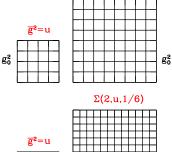
$$\bar{g}^2(L) = u, \qquad \bar{g}^2(sL) = u',$$

$$\Sigma(s, u, a/L) = u'$$

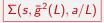
 \rightarrow continuum limit:

 $\Sigma(s, u, a/L) = \sigma(s, u) + O(a/L)$

- In our work: s = 2
- m = 0 (PCAC mass defined in $(L/a)^4$ lattice)



 $\Sigma(2,u,1/4)$



(gʻ)²

Lattice setup

• $N_f = 4$ O(a) improved massless Wilson fermions

New code for SF simulations

- $N_f = 0, 2, 4 \tau$ -language $APE \rightarrow$ flexible *PC code*
- SF-MP-HMC: Hasenbusch preconditioning, $N_{\rm PF} = 2$
- $L \equiv T \rightarrow CG$ solver, good scalability for SF lat. sizes

Set of $N_f = 4$ SF ensembles

- High statistics: O(160000) MDU trajectories
 - $L/a = 6 \rightarrow 2L/a = 12$ (9 couplings)
 - $L/a = 8 \rightarrow 2L/a = 16$ (10 couplings)
 - $L/a = 12 \rightarrow 2L/a = 24$ (1 coupling check of the cutoff effects)

 $\bullet\,$ Goal: to reduce the errors from [Tekin et. al 2010] by a factor of 2

Lattice setup

- $N_f = 4$ O(a) improved massless Wilson fermions
 - Achieved by tuning $\kappa_c(\beta, a/L)$, s.t. $m_{PCAC}(L) = 0$
 - Tuning criteria: |syst. err. from $m_{PCAC}| < aimed precision of \sigma(\overline{g}^2(L))$

Lattice setup

• $N_f = 4$ O(a) improved massless Wilson fermions

O(a) improvement

- NP determined $c_{SW}(g_0)$ for $N_f = 4$ theory [Tekin, Sommer, Wolff, 2009]
- Boundary O(a)-terms, e.g. $c_t(g_0)a^4 \sum_x F_{0k}F_{0k}$ at $x_0 = 0$ and $x_0 = T$ 2-loop computation by [Bode, Weisz, Wolff 1999]
- Remaining cutoff effects: [De Divitiis et al. 1993, ALPHA 1993-1999]

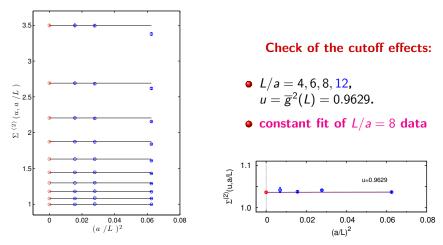
$$\delta(u, a/L) = rac{\Sigma(u, a/L) - \sigma(u)}{\sigma(u)} = \delta_1(a/L)u + \delta_2(a/L)u^2 + \dots$$

 $\Sigma^{(2)}(u,a/L) = rac{\Sigma(u,a/L)}{1+\delta_1(a/L)u+\delta_2(a/L)u^2}$

• Improved lattice SSF: $\Sigma^{(2)}(u, a/L) = \sigma(u) + O(a^2)$

Lattice SSF for $N_f = 4$

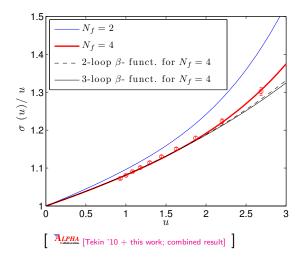
- L/a = 4 O(50000) MDU [Tekin '10]
- L/a = 6,8 O(200000) MDU [this work + Tekin '10, combined]

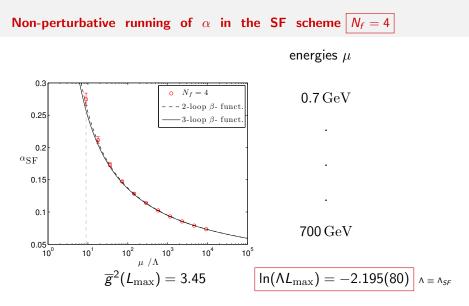


$$\Sigma^{(2)}(u,a/L) = \sigma(u), L/a = 8$$

Marina Marinkovic

Continuum step scaling function in the SF scheme $N_f = 4$





[old. res. ln(ΛL_{max}) = -2.294(153) [Tekin '10] corrected errorbars]

Strategy for the computation of $\Lambda_{\overline{MS}}^{(5)}$ in physical units

Still missing!

$$\frac{\Lambda_{\overline{MS}}^{(5)}}{f_{\mathrm{K}}} = \boxed{\frac{1}{f_{\mathrm{K}}L_{\mathrm{max}}}} \times \frac{L_{\mathrm{max}}}{L_{k}} \Lambda_{SF}^{(4)} L_{k} \times \frac{\Lambda_{\overline{MS}}^{(4)}}{\Lambda_{SF}^{(4)}} \times \frac{\Lambda_{\overline{MS}}^{(5)}}{\Lambda_{MS}^{(4)}}$$

• Scale setting: chiral and continuum extrapolation needed

- Intermediate scheme: connecting low and high energies 1-loop PT $\Lambda^{(4)}_{\overline{\rm MS}}/\Lambda^{(4)}_{SF}=2.9065$ [Sint'96, Sommer'11]
- Decoupling across the b-threshold [Chetyrkin'00]

Summary and outlook

Summary

- Precise determination Λ from non-perturbative methods needed to resolve discrepancies of PT estimates
- Finite-size scaling + Schrödinger functional scheme
- SF-MP-HMC code: good scalability, CG solver, flexible for different PC clusters
- 2^{nd} computation of the $N_f = 4$ SF running coupling
- Lambda parameter in the units of $L_{\rm max}$
- Ultimate goal: $N_{\rm f} = 4$ Lambda parameter in physical units

Outlook

- Gradient flow coupling [See talks: P.Fritzsch (Mon, 14.20h, 1C) & A. Ramos (Tue, 12h 6E)]
- Implementation of advanced solvers
- Matching to the physical units precise setting of the scale for $N_{\rm f} = 2 + 1 + 1$ is needed

Thank you !

SF in the lattice regularization: O(a) improved Wilson fermions

•
$$S_W[U] = \beta \sum_P w(P)(1 - \frac{1}{3} \operatorname{Re} \operatorname{Tr} U_P), \quad \beta = 6/g_0^2$$

 $w(P) = \begin{cases} 1 & U_P \text{ is the plaquette in the bulk,} \\ c_t(g_0) & U_P \text{ is the time-like touching } x_0 = 0 \text{ or } x_0 = T \text{ boundary,} \\ \frac{1}{2}c_s(g_0) & U_P \text{ is the space-like plaquette at } x_0 = 0, T. \end{cases}$

• Fermionic fields also: periodic in space

$$\begin{split} \psi(\mathbf{x} + L\hat{k}/\mathbf{a}) &= \mathrm{e}^{i\theta_k}\psi(\mathbf{x}),\\ \overline{\psi}(\mathbf{x} + L\hat{k}/\mathbf{a}) &= \mathrm{e}^{-i\theta_k}\overline{\psi}(\mathbf{x}). \end{split}$$

fixed on the time boundaries

$$\begin{split} & P_+\psi(x)|_{x_0=0}=\rho(x), & P_-\psi(x)|_{x_0=T}=\rho'(x), \\ & \overline{\psi}(x)P_-|_{x_0=0}=\overline{\rho}(x), & \overline{\psi}(x)P_+|_{x_0=T}=\overline{\rho}'(x), \end{split}$$

•
$$S_F = S_f^W + S_{SW} + S_b$$

 $S_b[U, \psi, \overline{\psi}] = \frac{a^4}{2} \sum_x \{ (\tilde{c}_s(g_0) - 1) [(\overline{\rho}(x)\gamma_k(\nabla_k^* + \nabla_k)\rho(x)) - (\overline{\rho}'(x)\gamma_k(\nabla_k^* + \nabla_k)\rho'(x))] + (\tilde{c}_t(g_0) - 1) [(\overline{\psi}(x)(P_-\nabla_0 + P_+\overline{\nabla}_0^*)\psi(x))_{x_0=a} - (\overline{\psi}(x)(P_-\nabla_0 + P_+\overline{\nabla}_0^*)\psi(x))_{x_0=\tau-a}] \}$

Additioanl improvement coefficients: on-shell improvement of the axial current cA

Marina Marinkovic

$N_f = 4$ running coupling - Backup slides

и	$\sigma(u)$	$\Delta(\sigma(u))$
0.93	0.998567	0.00164622
1	1.07943	0.00148896
1.08128	1.17405	0.00187277
1.1787	1.28861	0.00237175
1.29717	1.42987	0.00280331
1.44354	1.60788	0.00342647
1.62854	1.83945	0.00493976
1.87	2.1551	0.00761488
2.20033	2.61708	0.0105432
2.68704	3.37799	0.0213151

n	un	$ln(\Lambda L_{max})$	$\ln(\Lambda L_{max})^{(2-loop)}$
0	3.450	-2.028	-2.117
1	2.658(17)	-2.076(21)	-2.146
2	2.177(17)	-2.109(31)	-2.166
3	1.850(15)	-2.132(38)	-2.182
4	1.612(13)	-2.149(45)	-2.193
5	1.431(12)	-2.163(52)	-2.201
6	1.287(11)	-2.173(59)	-2.208
7	1.171(10)	-2.182(66)	-2.214
8	1.0737(93)	-2.189(73)	-2.218
9	0.9921(86)	-2.195(80)	-2.222
10	0.9222(80)	-2.200(87)	-2.225

Continuum step scaling function in the SF scheme $N_f = 4$

