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Eigenvector Deflation

Krylov solvers convergence controlled by the condition number

κ ∼
λmax

λmin

• Lattice chiral fermions possess an exact index theorem

• Index theorem ⇒ ∃ near zero modes separated from zero only by quark mass

• Recent algorithmic progress eliminates low mode subspace from Krylov inversion

EigCG:

• Determine Nvec ∼ O(V ) eigenvectors φi up to some physical λ

• 483 ⇒ 600 vectors, 643 ⇒ 1500 vectors

• Significant setup cost & storage cost ∝ V 2

• Eliminates Nvec dimensional subspace S = sp{φi} from problem

M =

(
Ms̄ s̄ ε

ε† Mss

)
; M−1

ss =
1

λi
|i〉〈i|

Where ε = Ms̄s is proportional to the error in the eigenvectors

Guess φ = diag{0} ⊕ diag{ 1
λi
}η



Why can we do better

Luscher’s observation: local coherence of low modes

low virtuality solutions of gauge covariant Dirac equation locally similar

Consider N well separated instantons

• N-zero modes look like admixtures of single instanton eigenmodes

• Divide one mode into chunks centred on each each instanton

• All N-zero modes described by the span of these chunks



Luscher’s inexact deflation

Avoid critical slowing down in Krylov solution of

Mψ = η

• Accelerate sparse matrix inversion by treating a vector subspace S = span{φk} exactly

• If the lowest lying eigenmodes are well contained in S the “rest” of the problem avoids
critical slowing down

Setup:

• Must generate subspace vectors φk that are “rich” in low modes

• Subdividing these vectors into blocks b

φ
b
k (x) =

{
φk (x) ; x ∈ b

0 ; x 6∈ b

yields a much larger subspace
483 × 96 lattice with 44 blocks ⇒ 123 × 24 coarse grid ⇒ O(104) bigger deflation space.

Similar idea previously used in αSA adaptive multigrid (Brezina et al 2004)

• covariant derivative ↔ algebraically smooth.

• blocks ↔ aggregates.

αSA −→ US multigrid collaboration & Wuppertal
Attempt using D†D for DWF arXiv:1205.2933 (Cohen, Brower, Clark, Osborn)



Inexact deflation framework

Introduce subspace projectors

PS =
∑
k,b

|φb
k〉〈φ

b
k | ; PS̄ = 1− PS (1)

Compute Mss as

M =

(
MS̄ S̄ MSS̄
MS̄S MSS

)
=

(
PS̄MPS̄ PSMPS̄
PS̄MPS PSMPS

)
• Can represent matrix M exactly on this subspace by computing its matrix elements, known as

the little Dirac operator 1

Aab
jk = 〈φa

j |M|φ
b
k〉

(MSS ) = Aab
ij |φ

a
i 〉〈φ

b
j |

and the subspace inverse can be solved by Krylov methods and is:

Q =

(
0 0

0 M−1
SS

)
M−1

SS = (A−1)abij |φ
a
i 〉〈φ

b
j |

A inherits a sparse structure from M - well separated blocks do not connect through M

1Coarse grid matrix in MG



Subspace Schur decomposition

We can Schur decompose any matrix

M = UDL =

[
Ms̄ s̄ Ms̄s

Mss̄ Mss

]
=

[
1 Ms̄sM

−1
ss

0 1

] [
S 0
0 Mss

] [
1 0

M−1
ss Mss̄ 1

]

Note that

PLM =

[
S 0
0 0

]
yields the Schur complement S = Ms̄ s̄ −Ms̄sM

−1
ss Mss̄

L and U related to Luscher’s projectors PL and PR
2

PL = PS̄U
−1 =

(
1 −MS̄SM

−1
SS

0 0

)

PR = L−1PS̄ =

(
1 0

−M−1
SS MSS̄ 0

)
Also, QM = 1− PR

2Galerkin oblique projectors in MG



Luscher’s algorithm

Multiply Mψ = η by 1− PL and PL yielding (1− PR )ψ and PRψ:

(1− PR )ψ = M−1
ss ηs

(PLM)χ = PLη

ψ = PRχ + M−1
ss ηs

• Each step of an outer Krylov solver involves an inner Krylov solution of the little Dirac op

• This enters the matrix PLM being inverted and errors propagate into solution
• Luscher tightens the precision during convergence; uses history forgetting flexible GCR

• Suppress little Dirac operator with Schwarz alternating procedure (SAP) preconditioner

(PLM)MSAPφ = PLη ; ψ = MSAPφ

• Non-hermitian system possible as evalues of DW live in right half of complex plane:

• Little Dirac operator for DW is nearest neighbour

• Red black preconditioning of Little dirac op possible
• Schwarz alternating procedure possible as DW does not connect red to red.



Generalisation to 5d Chiral fermions

Krylov solution of Hermitian system necessary (CG-NR, MCR-NR)
Aim to speed up the red-black preconditioned system as this starts better conditioned

H =
(
Moo −MoeM

−1
ee Meo

)† (
Moo −MoeM

−1
ee Meo

)
= M†precMprec

Matrix being deflated is is next-to-next-to-next-to-nearest-neighbour!

Tasks!

• Must find further suppression of little Dirac operator overhead as LDop more costly

• Must find a replacement for the Schwarz preconditioner

• Must find appropriate solver: (PLM)MSAP nonhermitian matrix so unsuitable for CG

• Must ensure system is tolerant to ill convergence of inner Krylov solver(s).



Little Dirac Operator

4 hop operator is painful as it connects 3280 neighbours!

• Limit the stencil of the Little Dirac operator by requiring block ≥ 44

• Mobius fermions M−1
ee is non-local in s-direction ⇒ blocks stretch full s-direction

• Sparse in 4d with next-to-next-to-next-to-nearest coupling

• Matrix still connects to 80 neighbours

(±x̂), (±ŷ), (±ẑ), (±t̂)
( ±x̂ ± ŷ), ( ±x̂ ± ẑ), (±x̂ ± t̂) , (±ŷ ± ẑ), ( ±ŷ ± t̂), ( ±ẑ ± t̂)

( ±x̂ ± ŷ ± ẑ), ( ±x̂ ± ŷ ± t̂), ( ±x̂ ± ẑ ± t̂), ( ±ŷ ± ẑ ± t̂)
( ±x̂ ± ŷ ± ẑ ± t̂)

• Underlying cost at least ten times more than non-Hermitian system

• Reducing to 4d has saved Ls factor but may require more vectors to describe 5th dimension



Little Dirac Operator Implementation

• 10× 10 matrix-vector complex multiply reasonably high cache reuse

• Using IBM xlc vector intrinsics gives adequate performance
• Single precision accelerated gives around 50 Gflop/s per node in L2 cache
• (re)Discovered bug in L2 cache around 4 months after Argonne

• 80 small messages of order 1-5 KB

• Programme BG/Q DMA engines directly to eliminate MPI overhead
• Asynchronous send overhead under 10 microseconds with precomputed DMA

descriptors.
• 50x faster than MPI calls.



Infra-red shift preconditioner
Since we are deflating the low modes, seek approximate inverse preconditioner for Hermitian
system that is accurate for high modes.

• Naive left-right preconditioner:

L†(PLH)Lφ = L†PLη

L ∼ (H)−
1
2

• Better to use preconditioned CG (p 278 Saad) with Hermitian preconditioner MP

MP = L†L ∼ (H)−1

• Use fixed number of shifted CG iterations as preconditioner (IR shifted preconditioner)

• Krylov solver seeks optimal polynomial under some norm

MIRS =
1

H + λ

• λ is an gauge covariant infra-red regulator that shifts the lowest modes

• Plays similar role to the domain size in SAP

• Keeps the Krylov solver working hard on the high mode region

• Does not have locality benefit of SAP3
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3Comms in BG/Q tolerate this, but Additive Schwarz is worth investigating for future machines (suggested by
Mike Clark)



Robustness

Two inner Krylov solvers

• Little Dirac operator inversion Q ≡ M−1
SS

• IR shifted preconditioner inversion MIRS = 1
H+λ

Curious robustness effects: during solution to 10−8 on a 163 lattice

M−1
SS residual MIRS residual Iteration count

10−11 10−8 36
10−8 10−8 Non converge 4

10−11 10−8 36
10−11 10−4 36
10−11 10−2 36

Although flexible CG (Notay 1999) exists better to understand why the CG is tolerant to variability

in M but not Q

4smallest residual is 10−7 then diverges. Here Luscher introduced flexible algorithms



Robustness

Consider preconditioned CG with A = PLH =

(
1 −MS̄SM

−1
SS

0 0

)
H

1. r0 = b − Ax0

2. z0 = MIRS r0 ; p0 = z0

3. for iteration k

4. αk = (rk , zk )/(pk ,Apk )

5. xk+1 = xk + αkpk

6. rk+1 = rk − αkApk

7. zk+1 = MIRSrk+1

8. βk = (rk+1, zk+1)/(rk, zk)

9. pk+1 = zk+1 + βkpk

10. end for

• Noise in the preconditioner MIRS only enters the search direction
αk is based on matrix elements of PLH.

• Better to use the Little Dirac operator inverse as a preconditioner
...and not separate the solution into subspace and complement
...already discussed as advantage of MG in Boston papers



Combining preconditioners

• Have little Dirac operator Q and MIRS representing approximate inverse

• Q on subspace containing low mode
• MIRS on high mode space
• splitting is necessarily inexact

• Options for combining these as a preconditioner

• Additive
MIRS + Q

• Consider alternating error reduction steps

xi+1 = xi + MIRS [b −Hxi ]
xi+2 = xi+1 + Q[b −Hxi+1]

= xi + MIRS [b −Hxi ] + Q[b −H[xi + MIRS [b −Hxi ]]]
= xi + [(1− QH)MIRS + Q](b −Hxi )
= xi + [PRMIRS + Q](b −Hxi )

• Infer family of preconditioner

Sequence Preconditioner Name
additive MIRS + Q AD
MIRS , Q PRMIRS + Q A-DEF2
Q, MIRS MIRSPL + Q A-DEF1

Q, MIRS , Q PRMIRSPL + Q Balancing Neumann Neumann (BNN)
Q, MIRS , Q MIRSPL + PRMIRS + Q −MIRSPLHMIRS MG Hermitian V(1,1) cycle



Generalised framework for inexact deflation solvers

Extend framework of Tang, Nabben, Vuik, Erlangga (2009) to three
levels

Take Q =

(
0 0

0 M
−1
SS

)
and MIRS = (H + λ)−1

Method Vstart M1 M2 M3 Vend
PREC x MIRS 1 1 xk+1

AD x MIRS + Q 1 1 xk+1
DEF1 x MIRS 1 PL Qb + PR xk+1
DEF2 Qb + PR x MIRS PR 1 xk+1

A-DEF1 x MIRSPL + Q PR 1 xk+1
A-DEF2 Qb + PR x PRMIRS + Q 1 1 xk+1

BNN x PRMIRSPL + Q 1 1 xk+1

• DEF1/DEF2/ADEF1/ADEF2/BNN are equivalent

• identical iterates with Vstart up to Q, MIRS error
• Luscher’s algorithm corresponds to DEF1

• Move little Dirac operator into the preconditioner with
formally identical convergence to inexact deflation!

• A-DEF2 is most tolerant of preconditioner variability

Remain in deflated Krylov picture but make it Heirarchical by deflating the deflation matrix Q

Algorithm

1. x arbitrary

2. x0 = Vstart

3. r0 = b −Hx0

4. y0 = M1r0 ; p0 = M2y0

5. for iteration k

6. wk = M3Hpk

7. αk = (rk , yk )/(pk , wk )

8. xk+1 = xk + αk pk

9. rk+1 = rk − αkwk

10. yk = M1rk

11.
βk = (rk+1, yk+1)/(rk, yk)

12. pk+1 = M2yk+1 + βkpk

13. end for

14. x = Vend



Why does CG work here?

• Hermiticity of M1 clear for BNN but not A-DEF1/2

Theorem: for Vstart = Qb + PRx A-DEF2 is identical to BNN.

• We have from QH = (1− PR )

Qr0 = Q[HVstart − b] = (1− PR )[Qb + PRx]− Qb = PRQb = 0

QHp0 = (1− PR )[PRMPL + Q]r0 = 0

• get induction steps:
Qrj+1 = Qrj − αjQHpj = 0

QHpj+1 = (1− PR )[PRMPL + Q]rj + βjQHpj = 0

• Can also show PLr0 = 0 and PLHp0 = Hp0 so that

PLHpj+1 = HPR [PRMPL + Q]rj + βjpj = Hpj+1

and
PLrj+1 = PLrj − αjPLHpj = rj − αjHpj = rj+1

BNN then retains PLrj = rj in exact arithmetic
⇒ BNN iteration (PRMPLrj ) and A-DEF2 iteration (PRMrj ) equivalent up to convergence
error

• DEF1(Luscher), DEF2, A-DEF1, A-DEF2, BNN are ALL equivalent up to convergence

BUT they differ hugely in sensitivity to convergence error in Q



Hermiticity and improved subspace generation

• Hermitian system gains the properties

P†L = PR (PLM)† = PLM

• Since we use H = M†precMprec we have a Hermitian Positive (semi) Definite matrix.
Generate subspace with rational multi-shift solver applied to Gaussian noise

R(ηGaussian) ∝
1

(H + λ)(H + λ + ε)(H + λ + 2ε)(H + λ + 3ε)
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• Classic low pass filtering problem – use rational filter

• Gain 1/x4 suppression in single pass without inverse iteration
• ε ∼ 10−3 adds IR safety to the inversion O(1000) iterations per subspace vector
• NB Also possible for γ5DW

• Subspace support only on walls possible. Potential to regain factor of Ls?



Subspace tricks

• Improved subspace generation

1. Solve rational in single precision to loose tolerance (10−4) and with reduced Ls

2. Compute HDCG operator
3. Refine subspace: loose (10−3) shifted HDCG inverse fills into bulk
4. Recompute HDCG operator

• 2-4x reduction in subspace generation over double precision rational
• Not all subspace vectors need be extensive in 5th dim
• Removes Ls factor from the expensive low mode subspace
• Gives same CG count as high precision rational filter

• Subspace reuse: recompute little Dop matrix elements with no change to subspace

• Twisted boundary conditions
• Moderate change in mass – not obvious for 5d chiral fermions but works!

Algorithm Volume mass Twist Solve time

CGNE 324 0.01 π
L (0, 0, 0) 30s

HDCG 324 0.01 π
L (0, 0, 0) 6.9s

HDCG 324 0.01 π
L (0.2, 0, 0) 6.9s

HDCG 324 0.01 π
L (0.5, 0.5, 0.0) 9.2s

HDCG 324 0.01 π
L (0.5, 0.5, 0.5) 9.8s

HDCG 324 0.1 π
L (0, 0, 0) 3.6s

HDCG 324 0.01 π
L (0, 0, 0) 6.9s

HDCG 324 0.005 π
L (0, 0, 0) 7.4s

HDCG 324 0.001 π
L (0, 0, 0) 7.8s



Hierarchical deflation

Deflate the deflation matrix !

• Block these vectors φb
k (e.g. 44 × Ls ) and compute little Dirac operator

Need only apply Nstencil = 80 matrix multiplies per vector to compute little Dirac operator
with a Fourier trick. Single precision suffices
Can detect stencil from matrix application and generate optimal code for 1,2,4 hop operators

• Compute second level of deflation heirarchy using inverse iteration on Gaussian noise.

• Diagonalise this basis to make multiplication cheap

• Massively reduce convergence precision:

• Use A-DEF2 to move the little Dirac operator into preconditioner
• Can relax convergence precision to 10−2

• Eight order of magnitude gain, saving of O(10) in overhead

• Deflate the deflation matrix (Heirarchical).

• Computing 128 low modes is cheap and saves another factor of 10.
• Reduces O(2000) little Dirac operator iterations to O(20).

From 483 at physical quark masses

Precision Heirarchical deflation iterations

10−7 N 4478
10−7 Y 250
10−2 Y 63

100 x reduction in little dirac operator overhead!



HDCG solver

Use outer CG A-DEF2 solver, DeflCG little dirac solver

Method Vstart M1 M2 M3 Vend
A-DEF2 Qb + PR x PRMIRS + Q 1 1 xk+1
DeflCG Qb + PR x 1 1 (1 − PR ) xk+1

Where

Q =

(
0 0

0 M
−1
SS

)
; PR =

(
1 0

−M
−1
SS

M
SS̄

0

)

H = M†pcMpc ; MIRS =
[
H + λpc

]−1

• Shifted matrix inversion M is solved with CG and fixed iteration count (N=8)

• MSS inversion is itself deflated

• All operations in CG are perfromed in single precision exceptH multiply, xj
and rj updates.

Tunable parameters

Fine Nvec 40

Fine blocksize 44 × Ls
Fine subspace filter 4th order rational λS ∼ 10−3

Fine subspace tolerance 10−6

Coarse Nvec 128
Coarse blocksize full volume

Coarse subspace filter Inverse iteration (3)

Coarse subspace tolerance 10−7[
M
†
pcMpc + λpc

]−1
8 iterations (tol ∼ 10−1)

λpc 1.0

M
−1
SS

tol 5 × 10−2

1. x arbitrary

2. x0 = Vstart

3. r0 = b −Hx0

4. y0 = M1r0 ; p0 = M2y0

5. for iteration k

6. wk = M3Hpk

7. αk = (rk , yk )/(pk , wk )

8. xk+1 = xk + αk pk

9. rk+1 = rk − αkwk

10. yk = M1rk

11. βk = (rk+1, yk+1)/(rk, yk)

12. pk+1 = M2yk+1 + βkpk

13. end for

14. x = Vend



Performance

Both fine and coarse dirac operators give around 30-50Gflop/s per node on BG/Q.

On 483 × 96× 24, Mπ = 140MeV, a−1 = 1.73 GeV on 1024 node rack

Algorithm Tolerance Cost Matmuls

CGNE (double) 10−8 1270s 16000
CGNE (mixed) 23000
EigCG (mixed) 10−8 320s 11710
EigCG (mixed) 10−4 55s 1400
EigCG (setup) 10h

EigCG (vectors) 600 vectors
HDCG (mixed) 10−8 117s 2060
HDCG (mixed) 10−4 9s 200
HDCG (setup) 40min

HDCG (vectors) 44 vectors

10−4 precision is used for the All-mode-averaging analysis

• Anticipate at least 5x speedup for RBC-UKQCD valence analysis over EigCG



Conclusions

Comparison Gain
Exact Solve vs CGNE 11x
Exact Solve vs EigCG 2.7x

Inexact Solve vs EigCG 5x
Setup vs EigCG 10x

Footprint vs EigCG 15-40x

• Developed inexact deflation method to accelerating preconditioned normal equations
Larger stencil required substantial algorithmic improvements

• Improved robustness with no formal change to inexact deflation:

• Little Dirac operator in preconditioner: more robust solver (10x)
• Heirarchical multi-level deflation (10x)

• Hermitian algorithm features

• IR shifted preconditioner to replace SAP
• Preconditioned CG tolerant to loose convergence of inner Krylov solver(s).
• No flexible algorithm was required

• Approach based in Krylov space methods, bears similarities to multigrid

• Step towards alleviating Ls scaling of 5d Chiral Fermions (subspace generation)

To do:

• Investigate numerically efficiency of additive Schwarz preconditioning 5

Domain decomposed preconditioner should give 2x Gflop/s improvement
Greater locality ⇒ candidate exascale algorithm

5suggested by Mike Clark


