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Eigenvector Deflation

Krylov solvers convergence controlled by the condition number

A max
Amin

K~

e Lattice chiral fermions possess an exact index theorem

® Index theorem = 3 near zero modes separated from zero only by quark mass

e Recent algorithmic progress eliminates low mode subspace from Krylov inversion
EigCG:

e Determine Nyec ~ O(V) eigenvectors ¢; up to some physical A

o 48% = 600 vectors, 64> = 1500 vectors

e Significant setup cost & storage cost < V2

e Eliminates N,ec dimensional subspace S = sp{¢;} from problem
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Where € = M is proportional to the error in the eigenvectors
Guess ¢ = diag{0} & diag{+ }n
!



Why can we do better

Luscher's observation: local coherence of low modes

low virtuality solutions of gauge covariant Dirac equation locally similar

Consider N well separated instantons
® N-zero modes look like admixtures of single instanton eigenmodes
e Divide one mode into chunks centred on each each instanton

® All N-zero modes described by the span of these chunks




Luscher’s inexact deflation

Avoid critical slowing down in Krylov solution of

My =n

® Accelerate sparse matrix inversion by treating a vector subspace S = span{¢x } exactly

® |If the lowest lying eigenmodes are well contained in S the “rest” of the problem avoids
critical slowing down

Setup:
® Must generate subspace vectors ¢, that are “rich” in low modes

® Subdividing these vectors into blocks b
by oy _ du(x) ; x€b
s ={ 2 reh

yields a much larger subspace
48% x 96 lattice with 4* blocks = 12° x 24 coarse grid = 0(104) bigger deflation space.

Similar idea previously used in aSA adaptive multigrid (Brezina et al 2004)
® covariant derivative <> algebraically smooth.
® blocks <> aggregates.

aSA — US multigrid collaboration & Wuppertal
Attempt using DT D for DWF arXiv:1205.2933 (Cohen, Brower, Clark, Osborn)




Inexact deflation framework

Introduce subspace projectors
b\, b
Ps = lea)(del Ps =1—Ps (1)
kb
Compute M as
M= Mss Mgz _ Ps:MPs  PsMPs
M§$ MSS P§MP5 PsMPS

e Can represent matrix M exactly on this subspace by computing its matrix elements, known as
the little Dirac operator !

A% = ($7IM|g})

(Mss) = A 67) (¢7 ]
and the subspace inverse can be solved by Krylov methods and is:

0 0
QZ(O M;J)

Mgt = (A7) 167) (a7

A inherits a sparse structure from M - well separated blocks do not connect through M

LCoarse grid matrix in MG



Subspace Schur decomposition

We can Schur decompose any matrix

Mss  Mss ]
1

M = UDL = [ il

Note that
PLM = [

yields the Schur complement S = Mz — MESM;1M5§
L and U related to Luscher’s projectors P, and PR?

Cpy-t_ (1 —MssMg!
P = PsU _( . s

Also, QM =1 — Py

2Galerkin oblique projectors in MG



Luscher's algorithm

Multiply My = n by 1 — P, and Py yielding (1 — Pg) and Pgri:
(1 — Pr)Y = M 'n,
(PLM)x = Pn
¥ = Prx + M s

e Each step of an outer Krylov solver involves an inner Krylov solution of the little Dirac op

e This enters the matrix P, M being inverted and errors propagate into solution
o Luscher tightens the precision during convergence; uses history forgetting flexible GCR

® Suppress little Dirac operator with Schwarz alternating procedure (SAP) preconditioner
(PLM)Msap¢ = Pin ; b = Msapg

e Non-hermitian system possible as evalues of Dyy live in right half of complex plane:

e Little Dirac operator for Dy is nearest neighbour

e Red black preconditioning of Little dirac op possible
e Schwarz alternating procedure possible as Dy, does not connect red to red.



Generalisation to 5d Chiral fermions

Krylov solution of Hermitian system necessary (CG-NR, MCR-NR)
Aim to speed up the red-black preconditioned system as this starts better conditioned

— T -
H= (Moo - MoeMeelMeo) (Moo - MoeMeelMeo) = MT Mprcc

prec

‘ Matrix being deflated is is next-to-next-to-next-to-nearest-neighbour!

Tasks!
e Must find further suppression of little Dirac operator overhead as LDop more costly
e Must find a replacement for the Schwarz preconditioner
® Must find appropriate solver: (P.M)Msap nonhermitian matrix so unsuitable for CG

® Must ensure system is tolerant to ill convergence of inner Krylov solver(s).



Little Dirac Operator

4 hop operator is painful as it connects 3280 neighbours!
e Limit the stencil of the Little Dirac operator by requiring block > 4*
® Mobius fermions M;el is non-local in s-direction = blocks stretch full s-direction
® Sparse in 4d with next-to-next-to-next-to-nearest coupling

® Matrix still connects to 80 neighbours
(£2), (£9). (£2), (&)
(£2+9), (£8£2)
(£8+y9+2), (£8Ly

x>

e Underlying cost at least ten times more than non-Hermitian system

e Reducing to 4d has saved Ls factor but may require more vectors to describe 5th dimension



Little Dirac Operator Implementation

® 10 x 10 matrix-vector complex multiply reasonably high cache reuse

e Using IBM xlc vector intrinsics gives adequate performance
e Single precision accelerated gives around 50 Gflop/s per node in L2 cache
e (re)Discovered bug in L2 cache around 4 months after Argonne

® 80 small messages of order 1-5 KB
e Programme BG/Q DMA engines directly to eliminate MPI overhead
e Asynchronous send overhead under 10 microseconds with precomputed DMA

descriptors.
e 50x faster than MPI calls.



Infra-red shift preconditioner
Since we are deflating the low modes, seek approximate inverse preconditioner for Hermitian
system that is accurate for high modes.

e Naive left-right preconditioner:
L'PH)Le = LT Py
Lo (M) 2
® Better to use preconditioned CG (p 278 Saad) with Hermitian preconditioner Mp
Mp =LTL ~ (H)™?

® Use fixed number of shifted CG iterations as preconditioner (IR shifted preconditioner)

e Krylov solver seeks optimal polynomial under some norm

1
HA+ A

® )\ is an gauge covariant infra-red regulator that shifts the lowest modes

e Plays similar role to the domain size in SAP
e Keeps the Krylov solver working hard on the high mode region

o Does not have locality benefit of SAP®

Migs =

3Comms in BG/Q tolerate this, but Additive Schwarz is worth investigating for future machines (suggested by
Mike Clark)



Robustness

Two inner Krylov solvers

e Little Dirac operator inversion Q = MgSI
® |R shifted preconditioner inversion Mjgs = ﬁ

Curious robustness effects: during solution to 1072 on a 16° lattice

Ms_sl residual Mrs residual Iteration count
1071 1078 36
108 108 Non converge
10- 1 10°° 36
10~ 10~* 36
1071 1072 36

Although flexible CG (Notay 1999) exists better to understand why the CG is tolerant to variability
in M but not Q

“smallest residual is 107 then diverges. Here Luscher introduced flexible algorithms



Robustness

_ a1
Consider preconditioned CG with A = P/H = ( (1) 7M5(5)M55 > H

=
o
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rn=b— Axg

.20 = Migsn ; po = 20

. for iteration k

- ak = (rk, zk)/(Pxs Apx)
Xk+1 = Xk + QkPk
fep1 = re — aAp
Zk1 = Mirsrii1

- B = (rer1, ziee1) / (e, 2w)
Pk+1 = Zk+1 + BrPk

. end for
Noise in the preconditioner Mjgs only enters the search direction

a is based on matrix elements of P H.

Better to use the Little Dirac operator inverse as a preconditioner
...and not separate the solution into subspace and complement
...already discussed as advantage of MG in Boston papers



Combining preconditioners

e Have little Dirac operator Q and M)gs representing approximate inverse

e Q on subspace containing low mode
® Migrs on high mode space
e splitting is necessarily inexact

e Options for combining these as a preconditioner

e Additive
Migs + Q
e Consider alternating error reduction steps
Xiy1 = xi + Migs[b — Hxi]
Xit2 = Xit1 + Q[b — Hxiy1]

X;i + Migs[b — Hxi] + Q[b — H[x; + Migs[b — Hx]]]
xi + [(1 = QH)Mirs 4+ Q](b — Hx;)
xi + [PRMirs + Q](b — Hx;)

e Infer family of preconditioner

Sequence Preconditioner Name
additive Migs + Q AD
Mirs, Q PrMigs + Q A-DEF2
Q, Migs MigsPL + Q A-DEF1
Q, Migs, Q PrMigsP, + Q Balancing Neumann Neumann (BNN)

Q, MIRS: Q MIRSPL + PRMIRS + Q — M/R5PLHM(R5 MG Hermitian V(].,].) cycle



Generalised framework for inexact deflation solvers

Extend framework of Tang, Nabben, Vuik, Erlangga (2009) to three

levels

0 0
TakeQ:( o m=l >and Migs = (1 + )7t

ss
Method Vstart My My M3 Vend
PREC x Mirs 1 1 Xkt
AD x Migs + Q 1 1 Xkt
DEF1 x Mirs 1 Pl Qb+ PRy
DEF2 Qb + Prx Mirs PR 1 Xer1
A-DEF1 x MigsP| + Q PR 1 Xer1
A-DEF2 Qb+ Prx PrMgs + Q 1 1 Xr1
BNN x PRMipsP + Q 1 1 Xa1

e DEF1/DEF2/ADEF1/ADEF2/BNN are equivalent

e identical iterates with Vi up to Q, Mjgs error
e Luscher's algorithm corresponds to DEF1

® Move little Dirac operator into the preconditioner with
formally identical convergence to inexact deflation!

e A-DEF2 is most tolerant of preconditioner variability

-

Algorithm

. x arbitrary

xp = Vstart
o =b— Hxy

yo = Myirg i pg = Mayg

. for iteration k

wy = M3Hpy
ap = (e vi)/ (P> wi)
Xk+1 = Xk T Pk

C Ml =TT QW

Yk = Myre

Bk = (15 Y1)/ (e ¥
Pkl = Mayiy1 + BiPk

. end for

x = Vend

Remain in deflated Krylov picture but make it Heirarchical by deflating the deflation matrix Q




Why does CG work here?

Hermiticity of My clear for BNN but not A-DEF1/2
Theorem: for Viiart = Qb + Prx A-DEF2 is identical to BNN.

We have from QH = (1 — Pg)
Qro = Q[H Vistart — bl = (1 — Pr)[Qb + Prx] — Qb = PrQp, =0
QHpo = (1 — PR)[PRMPL —+ Q]rg =0
get induction steps:
Qriy1 = Qi — ajQHp; =0

QHpj+1 = (1 — Pr)[PRMPL + Q]r; + B;Q@Hp; =0
Can also show P rp = 0 and P, Hpo = Hpo so that

P Hpj+1 = HPR[PRMPL + Q]r; + Bjp; = Hpj1

and
Pirjir = Pur — aPiHp; = 1; — ajHp = rjin

BNN then retains Py r; = r; in exact arithmetic
= BNN iteration (PR MP,r;) and A-DEF?2 iteration (Pr Mr;) equivalent up to convergence
error

DEF1(Luscher), DEF2, A-DEF1, A-DEF2, BNN are ALL equivalent up to convergence

BUT they differ hugely in sensitivity to convergence error in Q




Hermiticity and improved subspace generation

e Hermitian system gains the properties
Pl = Pg (PLM)T = PLM
® Since we use H = Mgrec Mprec we have a Hermitian Positive (semi) Definite matrix.
Generate subspace with rational multi-shift solver applied to Gaussian noise

1
(H+ M) (H+ X+ )(H + A+ 2)(H + A+ 3¢)

R(T]Gaussian) -

e Classic low pass filtering problem — use rational filter

Gain l/x4 suppression in single pass without inverse iteration
€ ~ 1072 adds IR safety to the inversion O(1000) iterations per subspace vector
NB Also possible for 5 Dy,

L]
L]
L]
e Subspace support only on walls possible. Potential to regain factor of Ls?



Subspace tricks

e |Improved subspace generation

1. Solve rational in single precision to loose tolerance (10~*) and with reduced L
2. Compute HDCG operator

3. Refine subspace: loose (10~3) shifted HDCG inverse fills into bulk

4. Recompute HDCG operator

® 2-4x reduction in subspace generation over double precision rational
e Not all subspace vectors need be extensive in 5th dim

e Removes L factor from the expensive low mode subspace

e Gives same CG count as high precision rational filter

® Subspace reuse: recompute little Dop matrix elements with no change to subspace

e Twisted boundary conditions
e Moderate change in mass — not obvious for 5d chiral fermions but works!

Algorithm Volume mass Twist Solve time
CGNE 32° 0.01 =(0,0,0) 30s
HDCG 32* 0.01 =(0,0,0) 6.9s
HDCG 32* 0.01 7(0.2,0,0) 6.9s
HDCG 324 0.01 7(0.5,0.5,0.0) 9.2s
HDCG 324 0.01 7(0.5,0.5,0.5) 9.8s
HDCG 32* 0.1 ~(0,0,0) 3.65
HDCG 324 0.01 7(0,0,0) 6.9s
HDCG 324 0.005 Z(0,0,0) 7.4s
HDCG 324 0.001 =(0,0,0) 7.8s




Hierarchical deflation

Deflate the deflation matrix !

® Block these vectors ¢f (e-g. 4% x Ls) and compute little Dirac operator
Need only apply Nstencit = 80 matrix multiplies per vector to compute little Dirac operator
with a Fourier trick. Single precision suffices
Can detect stencil from matrix application and generate optimal code for 1,2,4 hop operators

e Compute second level of deflation heirarchy using inverse iteration on Gaussian noise.

Diagonalise this basis to make multiplication cheap

® Massively reduce convergence precision:
e Use A-DEF2 to move the little Dirac operator into preconditioner
e Can relax convergence precision to 1072
e Eight order of magnitude gain, saving of O(10) in overhead

o Deflate the deflation matrix (Heirarchical).

e Computing 128 low modes is cheap and saves another factor of 10.
e Reduces O(2000) little Dirac operator iterations to O(20).

Precision ‘ Heirarchical deflation \ iterations

3 . 107 N 4478
From 48> at physical quark masses 10-7 v 250
1072 Y 63

100 x reduction in little dirac operator overhead! ‘




HDCG solver

Use outer CG A-DEF2 solver, DeflCG little dirac solver

Method | Vgtart My My M3 Vend
ADEF2 | Qb+ Prx  PrMjps + Q@ 1 1 N1
DefICG | Qb+ Pgx 1 1 (1—-PR) X
Where
( 0 0 ) , ( 1 0 )
= -1 P R = =1
0 Mg —Mss Mgz 0

H =Ml Mpe Migs = [ + Apc]

Shifted matrix inversion M is solved with CG and fixed iteration count (N=8)
® Mgg inversion is itself deflated
All operations in CG are perfromed in single precision except H multiply, ;

and r; updates.

Tunable parameters

Fine Nyec 40
Fine blocksize 44 X L
Fine subspace filter 4th order rational Ag ~ 10—3
Fine subspace tolerance 100
Coarse Nyec 128
Coarse blocksize full volume
Coarse subspace filter Inverse iteration (3)
Coarse subspace tolerance 107
[M}‘;C Mpe + Ape] -t 8 iterations (tol ~ 10— 1)
Apc 1.0
Mzt tol 5 x 1072

SS

-

10.
11

12.
13.
14.
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X arbitrary
x0 = Vstart
rp=>b— Hxy

Yo = Mirg i po = Mayg

for iteration k

wi = M3Hpy
A
Xk41 = Xk T okPk

Tkl = Tk — XkWk

Yk = My

Bk = (k41> Yk+1)/ (k> k)
Pl = Mayip1 + Bpk

end for

x = Vend




Performance

Both fine and coarse dirac operators give around 30-50Gflop/s per node on BG/Q.
On 48% x 96 x 24, M, = 140MeV, a—' = 1.73 GeV on 1024 node rack

Algorithm Tolerance Cost Matmuls
CGNE (double) 10°8 1270s 16000
CGNE (mixed) 23000
EigCG (mixed) 1078 320s 11710
EigCG (mixed) 1074 55s 1400
EigCG (setup) 10h
EigCG (vectors) 600 vectors
HDCG (mixed) 1078 117s 2060
HDCG (mixed) 10~* 9s 200
HDCG (setup) 40min

HDCG (vectors) 44 vectors

10~* precision is used for the All-mode-averaging analysis

® Anticipate at least 5x speedup for RBC-UKQCD valence analysis over EigCG



Conclusions

Comparison | Gain
Exact Solve vs CGNE 11x
Exact Solve vs EigCG 2.7x

Inexact Solve vs EigCG 5x
Setup vs EigCG 10x

Footprint vs EigCG 15-40x

e Developed inexact deflation method to accelerating preconditioned normal equations
Larger stencil required substantial algorithmic improvements
e |Improved robustness with no formal change to inexact deflation:
o Little Dirac operator in preconditioner: more robust solver (10x)
o Heirarchical multi-level deflation (10x)
e Hermitian algorithm features
o IR shifted preconditioner to replace SAP
e Preconditioned CG tolerant to loose convergence of inner Krylov solver(s).
e No flexible algorithm was required
e Approach based in Krylov space methods, bears similarities to multigrid
e Step towards alleviating L scaling of 5d Chiral Fermions (subspace generation)
To do:
® Investigate numerically efficiency of additive Schwarz preconditioning 5

Domain decomposed preconditioner should give 2x Gflop/s improvement
Greater locality = candidate exascale algorithm

5suggested by Mike Clark



