Optimization of the Oktay-Kronfeld Action Conjugate Gradient Inverter

Yong-Chull Jang, Jon A. Bailey, Carleton DeTar, Andreas Kronfeld, Weonjong Lee, M. B. Oktay

> Lattice Gauge Theory Research Center, Seoul National University (SWME, MILC, and Fermilab Lattice)

> > LATTICE 2013 Mainz, Germany JUL. 29 – AUG. 3

Heavy Flavor Physics with Lattice QCD Motivation

• 3σ tension in the neutral Kaon indirect CP violation parameter

$$|\epsilon_{\kappa}|^{\exp} = 2.228(11) \times 10^{-3}$$
 (PDG)
 $|\epsilon_{\kappa}|^{SM} = 1.6(2) \times 10^{-3}$ (SWME \hat{B}_{κ} , FNAL/MILC V_{cb})

Error budgets

$$\sigma(X)^2/\sigma(|\epsilon_K^{SM}|)^2 = \left\{egin{array}{cc} 14\% &, \hat{B}_K\ 51\% &, V_{cb} \end{array}
ight.$$

• A way of reducing the V_{cb} error is increasing the precision of lattice form factor calculation.

 $B \rightarrow D^{(*)} I \nu_I$

• Heavy quark discretization is a dominant error source.

$$m_b > a^{-1}, m_c \sim a^{-1}$$

• Theoretical improvement is needed in contrast to take a brute force approach of reducing a lattice spacing continuously.

OK Action [M. B. Oktay and A. S. Kronfeld, PRD 78, 014504 (2008)] Construction of LE \mathcal{L}

- OK action is the improved Fermilab action,
 - [A. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, PRD 55, 3933 (1997)].
 - Building blocks

$$B_i, E_i, D_\mu, \psi, \overline{\psi}, \gamma_\mu$$

- full set of d = 6 bilnear operators
- part of d = 7 bilinear operators which commensurate to d = 6 operators by the power counting
- No four-fermion operators (tree-level)
- The improvement terms are suppressed by up to
 - λ^3 of HQET power counting for heavy-light meson

$$\lambda \sim a \Lambda_{
m QCD}$$
 or $\Lambda_{
m QCD}/m_Q$

• v^6 of NRQCD power counting for heavy quarkonium

$$v = p/m_Q$$

OK Action

Power Counting

Number of bilinears

d	4	5	6	7
v^2	2	2		
v^4		2	4(2)	2(1)
v^6			3(<mark>2</mark>)	8(1)
<i>v</i> ⁸				2(<mark>0</mark>)

HQET $\lambda \sim a \Lambda_{
m QCD}$ or $\Lambda_{
m QCD}/m_Q$

• 4 of 7 dimension 6 operators and

2 of 12 dimension 7 operators have non-zero coupling after the tree-level matching.

OK Action

Matching: Tree Level

- [A. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, PRD 55, 3933 (1997)]
 - On-shell improvement amounts to an expansion in pa
 - Each matched coupling has full bare mass dependence, $c_i(m_0a)$.

[M. B. Oktay and A. S. Kronfeld, PRD 78, 014504 (2008)]

- Match the on-shell quantities
 - Energy (quark dispersion relation)
 - Current (quark-gluon vertex)
 - Quark-quark scattering
 - Compton scattering
- The tree-level matched action has **12 operators**.
- Use this action with the tree-level tadpole improvement.

Form of the Dirac Operator

$$M_{x,y}\psi_y = \xi_x$$

• In temporal direction, only the *nearest neighbors* are involved.

$$M_{x,x\pm 4} \neq 0$$

• All of the *next-nearest neighbors* in spacial directions participate in. (*i*, *j* = 1, 2, 3)

$$M_{x,x\pm i}, \ M_{x,x\pm i\pm j}, \ M_{x,x\pm i\mp j} \neq 0$$

 Dirac operator receives *on-site* contribution from the clover term and the mass term.

$$M_{x,x} \neq 0$$

• Each terms $M_{\rm x,y}$ consist of products of 1 \sim 5 gauge links and γ matrices.

Optimization of the CG Inverter Strategies

- Combinations of gauge link product(color matrix) in the Dirac operator are precalculated.
- Reflecting the γ matrix structure, the Dirac operator is represented by 4×4 block matrix, the precalcuation matrix.
- Each block is color matrix.

- *M*[†]*M* preconditioning
- Even-Odd preconditioning
- Spin projection

Reduce the Floating Point Operations

• The precalculation matrices connect the off-diagonal sites are symmetrized.

Toward a Memory Budget Solver

- The precalculation matrix which is pointing to the backward direction from the site x, is the *conjugate* of the forward precalculation matrix defined on the site x i j.
 - Hermitian conjugate in the spin-color space
 - followed by the sign correction

Simplify the Off-node Communication Pattern

• To update the fermion field on the red spot, one needs the fermion fields defined on the yellow sites and the precalcuation matrices defined on the blue-circled sites.

• To simplify this field access pattern, the shifted precalculation matrices are constructed.

Simplify the Off-node Communication Pattern

- Only the nearest neighbor off-node communications are required.
- Matrix multiplications are isolated from the communications.

- Only the nearest neighbor fermion fields are gathered and multiplied to the precalculation matrices.(Step 1)
- Then, the multipication results are gathered from the nearest neighbor sites and added up.(Step 2)

Libraries

Introduction

QOPQDP:

the implementation of QCD OPerations using QDP e.g., fermion inverters

• QDP:

a C implementation of the LQCD suitable Data Parallel interface

• CUDA:

the parallel computing architecture (Compute Unified Device Architecture) and/or programming language implemented by the NVIDIA GPU

• MILC:

a LQCD application package which is hosted by the MILC collaboration

• QUDA:

the QOPQDP analogy which is implemented by using CUDA

Libraries

Development Environments

- Bi-Stabilized CG solver in the QOPQDP is used.
- Mixed precision CG: Single precision iteration followed by a few double precision update
- D function:
 - matrix multiplication

$$M_{x,y}\psi_y = \xi_x$$

- precalculation
- communication
- For CPU cluster,
 - The $ot\!\!/$ function in the QOPQDP is optimized.
 - To test the solver, heavy meson correlators are calculated by using the MILC code.

Libraries

Development Environments

- For GPU cluster,
 - Only the matrix mutiplication module in the optimized QOPQDP D function is replaced by CUDA.
 - This matrix multiplication module for GPU is not fully optimized.
 - Precalculation and communication modules belong to the optimized QOPQDP code.

Performance

Time Table

• MILC coarse lattice $20^3 \times 64$ / 4 Nodes

	Naive	Optimized	CUDA
CG total (s)	11814.8	3036.8	891.0
Gain	1	3.9	13.3

- CPU: Intel i7 920@2.67GHz
- GPU: NVIDIA GTX 480
- Network: QLogic InfiniBand, 1 Rail

Timing (s)	Optimized	CUDA	
Matrix Multiplication [SP]	2469.3	79.7	
Matrix Multiplication [DP]	109.7	10.1	
FLOPS (GF/Nodes)	2.1	58.8	
CUDA Memory Copy, W		44.1	
CUDA Memory Copy, ψ		191.6	
FLOPS (GF/Nodes)		18.4	
QOPQDP Preparation		138.9	
Precalculation	67.1		
Communication	7.3		
Gamma Basis Change	45.2		
Spin Decomposition	62.5		

 Overhead(374.6s) exceeds the floating point calculation(89.8s).

Performance

Memory Requirement

- GTX 480 has 1.5GB global memory.
- Precalculation matrix is quite memory demanding.
- Only the single precision precalculation matrix is saved on the GPU global memory.

nodes	nx	ny	nz	nt	CPU(GBytes/node)	GPU(GBytes/node)
4	20	20	20	64	1.837	0.704
12	28	28	28	96	2.520	0.966
32	40	40	40	96	2.755	1.056
64	48	48	48	144	3.571	1.368
192	64	64	64	192	3.762	1.441

• Option: GTX Titan has 6GB global memory.

Future Work

- Optimize the GPU version of the OK action CG inverter further
- It is expected that the QOPQDP side overhead can be removed by using QUDA.
- The total memory transfer between CPU and GPU should be reduced.
- Use this inverter for the V_{cb} calculation

Thank you for your attention !