Confinement in Coulomb gauge
What does the lattice teach us?

Lattice 2013 - Mainz, July 29th 2013, Giuseppe Burgio
Together with:

- M. Quandt
- H. Reinhardt
- M. Schröck
- H. Vogt
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Faddeev-Popov insufficient beyond perturbation theory
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Faddeev-Popov insufficient beyond perturbation theory
- restrict gauge functional $F(A)$ to either:
 - $-\vec{D} \cdot \vec{\nabla} > 0$: Gribov Region \(\Omega \), local maxima
 - $-\vec{D} \cdot \vec{\nabla} - 1$ singular at \(\partial \Omega \) (\(\partial \Lambda \))!
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Faddeev-Popov insufficient beyond perturbation theory

- restrict gauge functional $F(A)$ to either:

 - $-\vec{D} \cdot \vec{\nabla} > 0$: Gribov Region Ω, local maxima $F(A)$ easy
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Faddeev-Popov insufficient beyond perturbation theory

- restrict gauge functional $F(A)$ to either:
 - $-\vec{D} \cdot \vec{\nabla} > 0$: Gribov Region Ω, local maxima $F(A)$ easy
 - absolute maxima $F(A)$: Fundamental Modular Region Λ hard
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Faddeev-Popov insufficient beyond perturbation theory

- restrict gauge functional $F(A)$ to either:
 - $-\vec{D} \cdot \vec{\nabla} > 0$: Gribov Region Ω, local maxima $F(A)$
 - absolute maxima $F(A)$: Fundamental Modular Region Λ

- $(-\vec{D} \cdot \vec{\nabla})^{-1}$ singular at $\partial \Omega$ ($\partial \Lambda$)!
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Singularity restricts functional integral to $\Omega (\Lambda)$
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Singularity restricts functional integral to $\Omega (\Lambda)$
- Radius of $\Omega (\Lambda)$ introduces an IR scale (Gribov mass M_G)
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Singularity restricts functional integral to $\Omega (\Lambda)$
- Radius of $\Omega (\Lambda)$ introduces an IR scale (Gribov mass M_G)
- $M_G \simeq O(\Lambda_{QCD}, \sigma_W) \Rightarrow$ confinement?
GZ-Confinement [Gribov NPB 1978; Zwanziger NPB 1997]

- Singularity restricts functional integral to $\Omega (\Lambda)$

- Radius of $\Omega (\Lambda)$ introduces an IR scale (Gribov mass M_G)

- $M_G \sim O(\Lambda_{QCD}, \sigma_W) \Rightarrow$ confinement?

- Natural test: A_μ, ψ dispersion relations; static potential
All gauges are equal...
All gauges are equal...

...but some are more equal than others!
All gauges are equal...

...but some are more equal than others!

- FP-ghost depends on the gauge. If/how GZ works also...
All gauges are equal...

...but some are more equal than others!

- FP-ghost depends on the gauge. If/how GZ works also...

- In CG (lattice) Gribov problem milder. $\Omega \sim \Lambda$?
All gauges are equal...

...but some are more equal than others!

- FP-ghost depends on the gauge. If/how GZ works also...
- In CG (lattice) Gribov problem milder. $\Omega \sim \Lambda$?
- In CG physical content clearer and/or easier to extract:
All gauges are equal...

...but some are more equal than others!

- FP-ghost depends on the gauge. If/how GZ works also...
- In CG (lattice) Gribov problem milder. $\Omega \sim \Lambda$?
- In CG physical content clearer and/or easier to extract:
 - Static Coulomb potential V_C
All gauges are equal...

...but some are more equal than others!

- FP-ghost depends on the gauge. If/how GZ works also...

- In CG (lattice) Gribov problem milder. $\Omega \sim \Lambda$?

- In CG physical content clearer and/or easier to extract:
 - Static Coulomb potential V_C
 - (quasi-)particles dispersion relations ω_A, ω_ψ
All gauges are equal...

...but some are more equal than others!

- FP-ghost depends on the gauge. If/how GZ works also...
- In CG (lattice) Gribov problem milder. $\Omega \sim \Lambda$?
- In CG physical content clearer and/or easier to extract:
 - Static Coulomb potential V_C
 - (quasi-)particles dispersion relations ω_A, ω_ψ
 - fermion mass $M(\bar{p})$
GZ scenario in CG

- Ghost form factor $d(\vec{p})$ IR divergent ⇒

 ω_A grows at large distances - no free gluons! [Gribov NPB 1978]
GZ scenario in CG

- Ghost form factor $d(\vec{p})$ IR divergent \Rightarrow

 ω_A grows at large distances - no free gluons! [Gribov NPB 1978]

- $V_C \geq V_{\text{phys}} \Rightarrow V_C(r) \simeq \sigma_C r$

 $V_C(\vec{p}) = 8\pi \sigma_C |\vec{p}|^{-4}$, \quad $\sigma_C \geq \sigma_W$

 necessary condition for confinement! [Zwanziger PRL 2003]
GZ scenario in CG

- Ghost form factor $d(\vec{p})$ IR divergent \Rightarrow

 ω_A grows at large distances - no free gluons! [Gribov NPB 1978]

- $V_C \geq V_{\text{phys}} \Rightarrow V_C(r) \simeq \sigma_C r$

 $V_C(\vec{p}) = 8\pi \sigma_C |\vec{p}|^{-4}$, \hspace{1em} $\sigma_C \geq \sigma_W$

 necessary condition for confinement! [Zwanziger PRL 2003]

- Does χ-symmetry breaking show in $M(\vec{p})$?
GZ scenario in CG

- Ghost form factor $d(\vec{p})$ IR divergent \Rightarrow
 - ω_A grows at large distances - no free gluons! [Gribov NPB 1978]

- $V_C \geq V_{phys} \Rightarrow V_C(r) \simeq \sigma_C r$
 - $V_C(\vec{p}) = 8\pi\sigma_C |\vec{p}|^{-4}$, $\sigma_C \geq \sigma_W$
 - necessary condition for confinement! [Zwanziger PRL 2003]

- Does χ-symmetry breaking show in $M(\vec{p})$?

- What about ω_{ψ}?
Results from Hamiltonian approach
Results from Hamiltonian approach

- Asymptotics for $\omega_A(\vec{p})$, $d(\vec{p})$
Results from Hamiltonian approach

- Asymptotics for $\omega_A(\vec{p})$, $d(\vec{p})$
 - IR power laws κ_{gl}, κ_{gh}
Results from Hamiltonian approach

- Asymptotics for $\omega_A(\vec{p})$, $d(\vec{p})$
 - IR power laws κ_{gl}, κ_{gh}
 - UV anomalous dimensions γ_{gl}, γ_{gh}
Results from Hamiltonian approach

- Asymptotics for $\omega_A(\vec{p}), d(\vec{p})$
 - IR power laws κ_{gl}, κ_{gh}
 - UV anomalous dimensions γ_{gl}, γ_{gh}
 - $\kappa_{gl} + 2\kappa_{gh} = 1$
 - $\gamma_{gl} + 2\gamma_{gh} = 1$

Dual superconductor! [Reinhardt PRL 2008]

Extension to fermions: running mass $M(\vec{p})$
Everything static "by construction!"
Results from Hamiltonian approach

- Asymptotics for $\omega_A(\vec{p})$, $d(\vec{p})$
 - IR power laws κ_{gl}, κ_{gh}
 - UV anomalous dimensions γ_{gl}, γ_{gh}
 - $\kappa_{gl} + 2\kappa_{gh} = 1$
 - $\gamma_{gl} + 2\gamma_{gh} = 1$
 - $\kappa_{gl} = -1$, $\kappa_{gh} = 1$, $\gamma_{gl} = 0$, $\gamma_{gh} = 1/2$

\vec{p} proportional to vacuum dielectric function

Dual superconductor! [Reinhardt PRL 2008]

Extension to fermions: running mass $M(\vec{p})$

Everything static "by construction!"
Results from Hamiltonian approach

- Asymptotics for $\omega_A(\vec{p})$, $d(\vec{p})$
 - IR power laws κ_{gl}, κ_{gh}
 - UV anomalous dimensions γ_{gl}, γ_{gh}
 - $\kappa_{gl} + 2\kappa_{gh} = 1$
 - $\gamma_{gl} + 2\gamma_{gh} = 1$
 - $\kappa_{gl} = -1$, $\kappa_{gh} = 1$, $\gamma_{gl} = 0$, $\gamma_{gh} = 1/2$

- $d(\vec{p}) \propto \epsilon(\vec{p})^{-1}$ vacuum dielectric function \Rightarrow Dual superconductor! [Reinhardt PRL 2008]
Results from Hamiltonian approach

- **Asymptotics for** $\omega_A(\vec{p})$, $d(\vec{p})$
 - IR power laws κ_{gl}, κ_{gh}
 - UV anomalous dimensions γ_{gl}, γ_{gh}
 - $\kappa_{gl} + 2\kappa_{gh} = 1$
 - $\gamma_{gl} + 2\gamma_{gh} = 1$
 - $\kappa_{gl} = -1$, $\kappa_{gh} = 1$, $\gamma_{gl} = 0$, $\gamma_{gh} = 1/2$

- $d(\vec{p}) \propto \epsilon(\vec{p})^{-1}$ vacuum dielectric function \Rightarrow Dual superconductor! [Reinhardt PRL 2008]

- Extension to fermions: running mass $M(\vec{p})$
Results from Hamiltonian approach

- Asymptotics for $\omega_A(\vec{p}), d(\vec{p})$
 - IR power laws κ_{gl}, κ_{gh}
 - UV anomalous dimensions γ_{gl}, γ_{gh}
 - $\kappa_{gl} + 2\kappa_{gh} = 1$
 - $\gamma_{gl} + 2\gamma_{gh} = 1$
 - $\kappa_{gl} = -1, \kappa_{gh} = 1, \gamma_{gl} = 0, \gamma_{gh} = 1/2$

- $d(\vec{p}) \propto \epsilon(\vec{p})^{-1}$ vacuum dielectric function \Rightarrow Dual superconductor! [Reinhardt PRL 2008]

- Extension to fermions: running mass $M(\vec{p})$

- Everything static “by construction”!
Goals of CG lattice investigation

From d, V_C, ω_A, $M(\bar{\rho})$ (and possibly ω_ψ) test:
Goals of CG lattice investigation

From d, V_C, ω_A, $M(\bar{\rho})$ (and possibly ω_ψ) test:

- GZ confinement scenario
Goals of CG lattice investigation

From $d, V_C, \omega_A, M(\bar{\rho})$ (and possibly ω_ψ) test:

- GZ confinement scenario
- Results from variational approach
Goals of CG lattice investigation

From d, V_C, ω_A, $M(\bar{\rho})$ (and possibly ω_ψ) test:

- GZ confinement scenario
- Results from variational approach
- Extend GZ to the quark sector
Goals of CG lattice investigation

From d, V_C, ω_A, $M(\bar{\rho})$ (and possibly ω_ψ) test:

- GZ confinement scenario

- Results from variational approach

- Extend GZ to the quark sector

- “Built-in” differences to continuum. Issues to be addressed!
Lattice calculations

Correlators in CG

1. Static “by construction”

\[G(\vec{p}) = |\vec{p}| - 2d(\vec{p}) = \delta_{ab} \langle \bar{c}_a(\vec{p}) c_b(-\vec{p}) \rangle = \langle -(\vec{D} \cdot \vec{\nabla}) - 1 \rangle V_C(\vec{p}) = g^2 \delta_{ab} \langle -(\vec{D} \cdot \vec{\nabla}) - 1 \rangle \]

Almost directly comparable to continuum

2. Time (i.e. energy!) dependent

\[D(\vec{p}, p_0) = \delta_{ab} \delta_{ij} \langle A^a_i(\vec{p}, p_0) A^b_j(-\vec{p}, -p_0) \rangle \]

\[S(\vec{p}, p_0) = \delta_{AB} \langle \bar{\psi}_A(\vec{p}, p_0) \psi_B(-\vec{p}, -p_0) \rangle \]

Equal-time component ⇔ integrate over \(p_0 \).

Sizable cut-off effects: scale with \(a^{-1} t \)...
Lattice calculations

Correlators in CG

1. Static “by construction”

- \(G(\vec{p}) = |\vec{p}|^{-2} d(\vec{p}) = \delta^{ab} \langle \bar{c}^a(\vec{p}) c^b(-\vec{p}) \rangle = \langle -(\bar{D} \cdot \nabla)^{-1} \rangle \)

- \(V_C(\vec{p}) = g^2 \delta^{ab} \langle -(\bar{D} \cdot \nabla)^{-1} \bar{\nabla}^2(\bar{D} \cdot \nabla)^{-1} \rangle \)
Lattice calculations

Correlators in CG

1. Static “by construction”

 - \(G(\vec{p}) = |\vec{p}|^{-2} d(\vec{p}) = \delta^{ab} \langle \bar{c}^a(\vec{p}) c^b(-\vec{p}) \rangle = \langle (-\vec{D} \cdot \vec{\nabla})^{-1} \rangle \)

 - \(V_C(\vec{p}) = g^2 \delta^{ab} \langle (-\vec{D} \cdot \vec{\nabla})^{-1} \vec{\nabla}^2 (-\vec{D} \cdot \vec{\nabla})^{-1} \rangle \)

 (Almost) directly comparable to continuum
Lattice calculations

Correlators in CG

1. Static “by construction”
 \[G(\vec{p}) = |\vec{p}|^{-2} d(\vec{p}) = \delta^{ab} \langle \bar{c}^a(\vec{p}) c^b(-\vec{p}) \rangle = \langle (-\vec{D} \cdot \vec{\nabla})^{-1} \rangle \]
 \[V_C(\vec{p}) = g^2 \delta^{ab} \langle (-\vec{D} \cdot \vec{\nabla})^{-1} \vec{\nabla}^2 (-\vec{D} \cdot \vec{\nabla})^{-1} \rangle \]
 (Almost) directly comparable to continuum

2. Time (i.e. energy!) dependent
 \[D(\vec{p}, p_0) = \delta^{ab} \delta_{ij} \langle A_i^a(\vec{p}, p_0) A_j^b(-\vec{p}, -p_0) \rangle \]
 \[S(\vec{p}, p_0) = \delta^{AB} \langle \bar{\psi}^A(\vec{p}, p_0) \psi^B(-\vec{p}, -p_0) \rangle \]
Lattice calculations

Correlators in CG

1. Static “by construction”

- \(G(\vec{p}) = |\vec{p}|^{-2} d(\vec{p}) = \delta^{ab} \langle \bar{c}^a(\vec{p}) c^b(-\vec{p}) \rangle = \langle (\vec{D} \cdot \vec{\nabla})^{-1} \rangle \)
- \(V_C(\vec{p}) = g^2 \delta^{ab} \langle (\vec{D} \cdot \vec{\nabla})^{-1} \vec{\nabla}^2 (\vec{D} \cdot \vec{\nabla})^{-1} \rangle \)

(Almost) directly comparable to continuum

2. Time (i.e. energy!) dependent

- \(D(\vec{p}, p_0) = \delta^{ab} \delta_{ij} \langle A^a_i(\vec{p}, p_0) A^b_j(-\vec{p}, -p_0) \rangle \)
- \(S(\vec{p}, p_0) = \delta^{AB} \langle \bar{\psi}^A(\vec{p}, p_0) \psi^B(-\vec{p}, -p_0) \rangle \)

Equal-time component ⇔ integrate over \(p_0 \).
Sizable cut-off effects: scale with \(a_t^{-1} \).
Minimizing lattice artifacts I

Anisotropic action. Closer to the Hamiltonian limit $a_t \to 0$!

$$S = \beta \sum_x \left\{ \gamma \sum_{j>i=1}^{d} \left(1 - \frac{1}{N_c} \Re [\text{Tr} (P_{ij}(x))] \right) + \frac{1}{\gamma} \sum_{i=1}^{d} \left(1 - \frac{1}{N_c} \Re [\text{Tr} (P_{i,d+1}(x))] \right) \right\}$$

γ bare anisotropy. Must fix $\xi = \frac{a_s}{a_t}$ non-perturbatively!

$T = 0$ simulations on a $L^3 \times (\xi L)$ lattice.
Need $\xi \gg 1$ for good scaling!
Strong effect, e.g. on $F(A)$ for fixed a_s

![Graph showing data points for a_s values]

Large corrections, scale with a_t^2, a_t^4 (glueball spectrum!)
Minimizing lattice artifacts II

Scaling violations in static gluon \(\sum_{p_0} D(\vec{p}, p_0) \)
Minimizing lattice artifacts II

Scaling violations in static gluon $\sum_{p_0} D(\vec{p}, p_0)$

- model explicit p_0 dependence to do $\int dp_0$ “analytically”
Minimizing lattice artifacts II

Scaling violations in static gluon \(\sum_{p_0} D(\vec{p}, p_0) \)

- model explicit \(p_0 \) dependence to do \(\int d\rho_0 \) “analytically”

- Static \(D(\vec{p}) \) renormalizable, “agrees” with Gribov’s formula

\[
\omega_A(|\vec{p}|) \propto \sqrt{|\vec{p}|^2 + \frac{M_G^4}{|\vec{p}|^2}}
\]

\(M_G = 0.856(8) \text{GeV} \). See H. Vogt’s talk...
Minimizing lattice artifacts III

- Lesson from Landau gauge:
 - full QCD exhibits strong scaling violations
Minimizing lattice artifacts III

Lesson from Landau gauge:

full QCD exhibits strong scaling violations

Must use improved actions!
Minimizing lattice artifacts III

- Lesson from Landau gauge:
 full QCD exhibits strong scaling violations
 Must use improved actions!
 - Generate them yourself: expensive...
Minimizing lattice artifacts III

- Lesson from Landau gauge:
 - full QCD exhibits strong scaling violations
 - Must use improved actions!
 - Generate them yourself: expensive...
 - Download configurations from ILDG, e.g. Asqtad (MILC) 😊
Minimizing lattice artifacts III

- Lesson from Landau gauge:
 - full QCD exhibits strong scaling violations
 - Must use improved actions!
 - Generate them yourself: expensive...

- Download configurations from ILDG, e.g. Asqtad (MILC)
 - Parameters rarely test the “deep” IR
Ghost from factor \(d\) (see also H. Vogt’s talk)
Ghost from factor d (see also H. Vogt’s talk)

- UV behaviour: well fitted by $\gamma_{gh} = \frac{1}{2}$
Ghost from factor d (see also H. Vogt’s talk)

- UV behaviour: well fitted by $\gamma_{gh} = \frac{1}{2}$

- IR behavior: $\kappa_{gh} \gtrsim 0.5$. Agrees with GZ scenario!
Ghost from factor d (see also H. Vogt’s talk)

- UV behaviour: well fitted by $\gamma_{gh} = \frac{1}{2}$

- IR behavior: $\kappa_{gh} \gtrsim 0.5$. Agrees with GZ scenario!
 - IR sum rule violated?
Ghost from factor \(d\) (see also H. Vogt’s talk)

- UV behaviour: well fitted by \(\gamma_{gh} = \frac{1}{2}\)

- IR behavior: \(\kappa_{gh} \gtrsim 0.5\). Agrees with GZ scenario!

 - IR sum rule violated?

 - Exceptional configurations with high contributions to \(d\)

 FP inversion numerically difficult; need better algorithms
Ghost from factor d (see also H. Vogt’s talk)

- UV behaviour: well fitted by $\gamma_{gh} = \frac{1}{2}$

- IR behavior: $\kappa_{gh} \gtrsim 0.5$. Agrees with GZ scenario!

 - IR sum rule violated?

 - Exceptional configurations with high contributions to d

 FP inversion numerically difficult; need better algorithms

Best estimate for κ_{gh} might just be lower bound
Ghost from factor d (see also H. Vogt’s talk)

- UV behaviour: well fitted by $\gamma_{gh} = \frac{1}{2}$

- IR behaviour: $\kappa_{gh} \gtrsim 0.5$. Agrees with GZ scenario!
 - IR sum rule violated?
 - Exceptional configurations with high contributions to d
 FP inversion numerically difficult; need better algorithms

Best estimate for κ_{gh} might just be lower bound

and/or static vertex might not be trivial...
Extracting Coulomb string tension

- Asymptotic + leading corrections:

\[V_C(r) = \sigma_C r + \mu - \frac{\lambda}{r} + \mathcal{O}\left(\frac{1}{r^2}\right), \]
Extracting Coulomb string tension

- Asymptotic + leading corrections:
 \[V_C(r) = \sigma_C r + \mu - \frac{\lambda}{r} + O\left(\frac{1}{r^2}\right), \]

- Introduce an intermediate IR cutoff...
 \[|\vec{p}|^4 V_C(\vec{p}) = 8\pi\sigma_C + 4\pi\lambda|\vec{p}|^2 + O(|\vec{p}|^3) \]

 \(\mu\) term vanishes with IR cutoff...
Extracting Coulomb string tension

- Asymptotic + leading corrections:
 \[V_C(r) = \sigma_C r + \mu - \frac{\lambda}{r} + \mathcal{O}(\frac{1}{r^2}) , \]

- Introduce an intermediate IR cutoff...
 \[|\vec{p}|^4 V_C(\vec{p}) = 8\pi\sigma_C + 4\pi\lambda|\vec{p}|^2 + \mathcal{O}(|\vec{p}|^3) \]

 \(\mu \) term vanishes with IR cutoff...

- From \(\lambda \) term: no IR plateau!
Extracting Coulomb string tension

- Asymptotic + leading corrections:
 \[V_C(r) = \sigma_C r + \mu - \frac{\lambda}{r} + O\left(\frac{1}{r^2}\right), \]

- Introduce an intermediate IR cutoff...
 \[|\vec{p}|^4 V_C(\vec{p}) = 8\pi\sigma_C + 4\pi\lambda|\vec{p}|^2 + O(|\vec{p}|^3) \]

 \(\mu\) term vanishes with IR cutoff...

- From \(\lambda\) term: no IR plateau!

- Optimist: fit using such information \(\sigma_C = 2.2(2)\sigma\)
Extracting Coulomb string tension

- Asymptotic + leading corrections:

\[V_C(r) = \sigma_C r + \mu - \frac{\lambda}{r} + \mathcal{O}\left(\frac{1}{r^2}\right), \]

- Introduce an intermediate IR cutoff...

\[|\vec{p}|^4 V_C(\vec{p}) = 8\pi\sigma_C + 4\pi\lambda|\vec{p}|^2 + \mathcal{O}(|\vec{p}|^3) \]

\(\mu \) term vanishes with IR cutoff...

- From \(\lambda \) term: no IR plateau!

- Optimist: fit using such information \(\sigma_C = 2.2(2)\sigma \)

Hard to get clean fit: see H. Vogt’s talk.
Quark

From the Dirac operator in CG we get

\[S^{-1}(\vec{p}, p_0) = i\vec{p}A_s(\vec{p}) + ip_0A_t(\vec{p}) + B_m(\vec{p}) \]
From the Dirac operator in CG we get

\[S^{-1}(\vec{p}, p_0) = i\vec{p} A_s(\vec{p}) + i p_0 A_t(\vec{p}) + B_m(\vec{p}) \]

If renormalizable:

\[S^{-1}(\vec{p}, p_0) = Z^{-1}(\vec{p}) \left[i\vec{p} + i p_0 \alpha(\vec{p}) + M(\vec{p}) \right] \]
Quark

- From the Dirac operator in CG we get
 \[S^{-1}(\vec{p}, p_0) = i\vec{p}A_s(\vec{p}) + i\phi_0 A_t(\vec{p}) + B_m(\vec{p}) \]

- If renormalizable:
 \[S^{-1}(\vec{p}, p_0) = Z^{-1}(\vec{p}) \left[i\vec{p} + i\phi_0 \alpha(\vec{p}) + M(\vec{p}) \right] \]
 \[\alpha(\vec{p}) \text{ and } M(\vec{p}) \text{ must be cut-off independent} \]
Quark

- From the Dirac operator in CG we get
 \[S^{-1}(\vec{p}, p_0) = i\vec{p}A_s(\vec{p}) + ip_0A_t(\vec{p}) + B_m(\vec{p}) \]

- If renormalizable:
 \[S^{-1}(\vec{p}, p_0) = Z^{-1}(\vec{p}) \left[i\vec{p} + ip_0\alpha(\vec{p}) + M(\vec{p}) \right] \]

 \(\alpha(\vec{p}) \) and \(M(\vec{p}) \) must be cut-off independent

 \(Z(\vec{p}) \) must be renormalizable
Quark

- From the Dirac operator in CG we get
 \[S^{-1}(\vec{p}, p_0) = i\vec{p}A_s(\vec{p}) + ip_0A_t(\vec{p}) + B_m(\vec{p}) \]

- If renormalizable:
 \[S^{-1}(\vec{p}, p_0) = Z^{-1}(\vec{p}) \left[i\vec{p} + ip_0\alpha(\vec{p}) + M(\vec{p}) \right] \]
 - \(\alpha(\vec{p}) \) and \(M(\vec{p}) \) must be cut-off independent
 - \(Z(\vec{p}) \) must be renormalizable

- Define \(S(\vec{p}) \), \(\omega_\psi \) from \(S^{-1}(\vec{p}, p_0) \)
$Z(\vec{p})$ renormalizable

28^3\times 96, a = 0.086 \text{ fm}, m = 27.1 \text{ MeV}

20^3\times 64, a = 0.121 \text{ fm}, m = 31.5 \text{ MeV}
\(\alpha(\vec{p}) \) scale invariant

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Plot of \(\alpha(\vec{p}) \) vs. \(|k| \) [GeV] for different lattice sizes and masses.}
\end{figure}

- \(28^3 \times 96, a = 0.086 \text{ fm}, m = 27.1 \text{ MeV}, \text{ IPG} \)
- \(20^3 \times 64, a = 0.121 \text{ fm}, m = 31.5 \text{ MeV}, \text{ IPG} \)
- \(20^3 \times 64, a = 0.120 \text{ fm}, m = 47.3 \text{ MeV}, \text{ IPG} \)
- \(20^3 \times 64, a = 0.119 \text{ fm}, m = 63.1 \text{ MeV}, \text{ IPG} \)
$M(\bar{p})$ scale invariant (for fixed quark mass!)

![Graph showing $M(\bar{p})$ scale invariant for different values of $|k|$ with various marked points and error bars, indicating data points for different lattice resolutions and quark masses.](image-url)
Chiral limit for $M(\vec{p})$

\[M(|\vec{k}|, m_b) = \frac{m_\chi(m_b)}{1 + b \frac{|\vec{k}|^2}{\Lambda^2} \log \left(e + \frac{|\vec{k}|^2}{\Lambda^2} \right)^{-\gamma}} + \frac{m_r(m_b)}{\log \left(e + \frac{|\vec{k}|^2}{\Lambda^2} \right)^{\gamma}} \]

\[b = 2.9(1), \gamma = 0.84(2), \Lambda = 1.22(6) \text{ GeV}, m_\chi(0) = 0.31(1) \text{ GeV}, \frac{\chi^2}{\text{d.o.f.}} = 1.06 \]
Define $S(\vec{p})$, $\omega_\psi(|\vec{p}|) I$

Analogy with free fermion: Hamiltonian

$$S^H(\vec{p}) = \int d\rho_0 \ S(\vec{p}, \rho_0) \propto H$$
Define $S(\vec{p})$, $\omega_\psi(|\vec{p}|)$ I

Analogy with free fermion: Hamiltonian

$$S^H(\vec{p}) = \int dp_0 \; S(\vec{p}, p_0) \propto H$$

$$S^H(\vec{p}) = \frac{Z(\vec{p})}{\alpha(\vec{p})} \frac{\sqrt{\vec{p}^2 + M^2(|\vec{p}|)}}{i \vec{p} + M(\vec{p})} = \frac{Z(\vec{p})}{\alpha(\vec{p})} \frac{-i \vec{p} + M(\vec{p})}{\sqrt{\vec{p}^2 + M^2(|\vec{p}|)}}$$

No divergences 😊
Define $S(\vec{p})$, $\omega_\psi(|\vec{p}|)$

Analogy with free fermion: Hamiltonian

$$S^H(\vec{p}) = \int dp_0 \, S(\vec{p}, p_0) \propto H$$

$$S^H(\vec{p}) = \frac{Z(\vec{p})}{\alpha(\vec{p})} \sqrt{\vec{p}^2 + M^2(|\vec{p}|)} = \frac{Z(\vec{p})}{\alpha(\vec{p})} \frac{-i\vec{p} + M(\vec{p})}{\sqrt{\vec{p}^2 + M^2(|\vec{p}|)}}$$

No divergences 😊

Coefficient$^{-1}$ of $-i\vec{p} + M(\vec{p})$ eigenvalue of H: quark effective energy!

$$\omega^H_\psi(|\vec{p}|) = \frac{\alpha(|\vec{p}|)}{Z(|\vec{p}|)} \sqrt{\vec{p}^2 + M^2(|\vec{p}|)}$$
Define \(S(\vec{p}) \), \(\omega_\psi(|\vec{p}|) \) II

Analogy with free fermion: Euclidean

Consistency between \(\int dp_0 \, S(\vec{p}, p_0) \) and \(\int dp_0 \, S^{-1}(\vec{p}, p_0) \)
Define $S(\vec{p})$, $\omega_\psi(|\vec{p}|)$ II

Analogy with free fermion: Euclidean

Consistency between $\int dp_0 S(\vec{p}, p_0)$ and $\int dp_0 S^{-1}(\vec{p}, p_0)$

$S^E(\vec{p}) = \Lambda \frac{Z(\vec{p})}{i\vec{p} + M(\vec{p})}$

$\Lambda \propto a_t^{-1} \rightarrow \infty \smile$
Define $S(\vec{p})$, $\omega_\psi(|\vec{p}|)$ II

Analogy with free fermion: Euclidean

Consistency between $\int dp_0 S(\vec{p}, p_0)$ and $\int dp_0 S^{-1}(\vec{p}, p_0)$

- $S^E(\vec{p}) = \Lambda \frac{Z(\vec{p})}{i\vec{p} + M(\vec{p})}$

- $\Lambda \propto a_t^{-1} \rightarrow \infty \ominus$

- Quark effective energy

$$\omega_\psi^E(|\vec{p}|) = \int dp_0 S^2(\vec{p}, p_0) = \frac{\alpha(|\vec{p}|)}{Z^2(|\vec{p}|)} \sqrt{\vec{p}^2 + M^2(|\vec{p}|)}$$
\[\omega_{\psi}^{H,E}(|\vec{p}|) = \frac{\alpha(|\vec{p}|)}{Z(2)(|\vec{p}|)} \sqrt{p^2 + M^2(|\vec{p}|)} \]

\[M(|\vec{p}|) \to m_\chi. \text{ Only } \frac{\alpha}{Z(2)} \text{ relevant for IR...} \]

Both IR enhanced! What happens at lower momenta?
Summary

- Static propagators in CG renormalizable
Summary

- Static propagators in CG renormalizable

- $d(\vec{p}) \gtrsim |\vec{p}|^{-1/2}$ IR divergent; GZ works!
Summary

- Static propagators in CG renormalizable

\[d(\vec{p}) \gtrsim |\vec{p}|^{-1/2} \] IR divergent; GZ works!

- \(\sigma_C > \sigma \). Trust extrapolation to 2.2(2) \(\sigma \)?
Summary

- Static propagators in CG renormalizable

\[d(\vec{p}) \gtrsim |\vec{p}|^{-1/2} \] IR divergent; GZ works!

- \(\sigma_C > \sigma \). Trust extrapolation to 2.2(2) \(\sigma \)?

- \(\omega_A, \omega_\psi \) IR divergent, as expected from confinement
Summary

- Static propagators in CG renormalizable

\[d(\vec{p}) \gtrsim |\vec{p}|^{-1/2} \] IR divergent; GZ works!

- \(\sigma_C > \sigma \). Trust extrapolation to 2.2(2) \(\sigma \)?

- \(\omega_A, \omega_\psi \) IR divergent, as expected from confinement

- \(M(\vec{p}) \) well describes \(\chi \)-symmetry breaking
Outlook
Outlook

See H. Vogt’s talk!
Thanks!